tx · 2EAsscTWTcXLbZe4WsBMSSeTj11Qf1Abr2c6XurS2kqL 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY: -0.01000000 Waves 2024.04.27 17:15 [3081359] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves
{ "type": 13, "id": "2EAsscTWTcXLbZe4WsBMSSeTj11Qf1Abr2c6XurS2kqL", "fee": 1000000, "feeAssetId": null, "timestamp": 1714227234026, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "2q1e3UguMMubQmyAwRhfjfj7Qzrb1gJ7QxKMUsqSyqeJWUUo49ThpfxB3qnt1L6gqQktgt5mEX4dTMkTAAiunpho" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAcAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmxCQAETAAAAAIAAAAAAAAJKp0FAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLQUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwWCQAETAAAAAIA///////2TQsFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcUJAARMAAAAAgD///////JPigUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAAB3NpZ21vaWQAAAACAAAAAXoAAAALZGVidWdQcmVmaXgEAAAAAWUAAAAAAAApekkEAAAABGJhc2UAAAAAAAAPQkAEAAAACXBvc2l0aXZlWgMJAABmAAAAAgAAAAAAAAAAAAUAAAABegkBAAAAAS0AAAABBQAAAAF6BQAAAAF6BAAAAAdzY2FsZWRaCQAAaQAAAAIFAAAACXBvc2l0aXZlWgAAAAAAAAAnEAQAAAAHZXhwUGFydAkAAGsAAAADBQAAAAFlBQAAAARiYXNlBQAAAAdzY2FsZWRaBAAAAAhzaWdWYWx1ZQkAAGsAAAADBQAAAARiYXNlCQAAZAAAAAIFAAAABGJhc2UFAAAAB2V4cFBhcnQFAAAABGJhc2UJAAUUAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgkAASwAAAACBQAAAAtkZWJ1Z1ByZWZpeAIAAAAJcG9zaXRpdmVaBQAAAAlwb3NpdGl2ZVoJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAAB2V4cFBhcnQFAAAAB2V4cFBhcnQJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACHNpZ1ZhbHVlBQAAAAhzaWdWYWx1ZQUAAAADbmlsBQAAAAhzaWdWYWx1ZQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEAAAABWlucHV0AAAAB3dlaWdodHMAAAAGYmlhc2VzAAAAC2RlYnVnUHJlZml4BAAAAARzdW0wCQAAZAAAAAIJAABkAAAAAgkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAA9CQAkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAAEAAAABHN1bTEJAABkAAAAAgkAAGQAAAACCQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAD0JACQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAABAAAAAAAAAAABAAAAAAAAD0JACQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAQQAAAALJHQwMTE0NTExOTEJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMAIAAAAITGF5ZXIxTjAEAAAABmRlYnVnMAgFAAAACyR0MDExNDUxMTkxAAAAAl8xBAAAAARzaWcwCAUAAAALJHQwMTE0NTExOTEAAAACXzIEAAAACyR0MDExOTYxMjQyCQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTECAAAACExheWVyMU4xBAAAAAZkZWJ1ZzEIBQAAAAskdDAxMTk2MTI0MgAAAAJfMQQAAAAEc2lnMQgFAAAACyR0MDExOTYxMjQyAAAAAl8yCQAFFAAAAAIJAARMAAAAAgUAAAAEc2lnMAkABEwAAAACBQAAAARzaWcxBQAAAANuaWwJAAROAAAAAgUAAAAGZGVidWcwBQAAAAZkZWJ1ZzEBAAAAEWZvcndhcmRQYXNzTGF5ZXIyAAAABAAAAAVpbnB1dAAAAAd3ZWlnaHRzAAAABmJpYXNlcwAAAAtkZWJ1Z1ByZWZpeAQAAAAEc3VtMAkAAGQAAAACCQAAZAAAAAIJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPQkAJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAPQkAJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAABAAAAAskdDAxNTExMTU1NwkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0wAgAAAAhMYXllcjJOMAQAAAAGZGVidWcwCAUAAAALJHQwMTUxMTE1NTcAAAACXzEEAAAABHNpZzAIBQAAAAskdDAxNTExMTU1NwAAAAJfMgkABRQAAAACBQAAAARzaWcwBQAAAAZkZWJ1ZzAAAAABAAAAAWkBAAAAB3ByZWRpY3QAAAACAAAABmlucHV0MQAAAAZpbnB1dDIEAAAADHNjYWxlZElucHV0MQMJAAAAAAAAAgUAAAAGaW5wdXQxAAAAAAAAAAABAAAAAAAAD0JAAAAAAAAAAAAABAAAAAxzY2FsZWRJbnB1dDIDCQAAAAAAAAIFAAAABmlucHV0MgAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAAGaW5wdXRzCQAETAAAAAIFAAAADHNjYWxlZElucHV0MQkABEwAAAACBQAAAAxzY2FsZWRJbnB1dDIFAAAAA25pbAQAAAALJHQwMTgwODE5MDYJAQAAABFmb3J3YXJkUGFzc0xheWVyMQAAAAQFAAAABmlucHV0cwUAAAANbGF5ZXIxV2VpZ2h0cwUAAAAMbGF5ZXIxQmlhc2VzAgAAAAZMYXllcjEEAAAADGxheWVyMU91dHB1dAgFAAAACyR0MDE4MDgxOTA2AAAAAl8xBAAAAAtkZWJ1Z0xheWVyMQgFAAAACyR0MDE4MDgxOTA2AAAAAl8yBAAAAAskdDAxOTExMjAxNQkBAAAAEWZvcndhcmRQYXNzTGF5ZXIyAAAABAUAAAAMbGF5ZXIxT3V0cHV0BQAAAA1sYXllcjJXZWlnaHRzBQAAAAxsYXllcjJCaWFzZXMCAAAABkxheWVyMgQAAAAMbGF5ZXIyT3V0cHV0CAUAAAALJHQwMTkxMTIwMTUAAAACXzEEAAAAC2RlYnVnTGF5ZXIyCAUAAAALJHQwMTkxMTIwMTUAAAACXzIJAAROAAAAAgkABE4AAAACCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACAgAAAAZyZXN1bHQFAAAADGxheWVyMk91dHB1dAUAAAADbmlsBQAAAAtkZWJ1Z0xheWVyMQUAAAALZGVidWdMYXllcjIAAAAA+5sCSw==", "height": 3081359, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: 63HL2ET9udUcXr31RyWXVSbexg4dmVv2RJVheQd1HjGm Next: 5hqRJoKMtNcDRPoU3dMpZhfLar5vJieTpCzaPJWSNuV7 Diff:
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let layer1Weights = [[ | |
4 | + | let layer1Weights = [[600497, 600733], [414197, 414253]] | |
5 | 5 | ||
6 | - | let layer1Biases = [- | |
6 | + | let layer1Biases = [-259050, -635637] | |
7 | 7 | ||
8 | - | let layer2Weights = [[ | |
8 | + | let layer2Weights = [[832965, -897142]] | |
9 | 9 | ||
10 | - | let layer2Biases = [-316162, 294501] | |
11 | - | ||
12 | - | let layer3Weights = [[-893964, 951736]] | |
13 | - | ||
14 | - | let layer3Biases = [-19235] | |
10 | + | let layer2Biases = [-381179] | |
15 | 11 | ||
16 | 12 | func sigmoid (z,debugPrefix) = { | |
17 | 13 | let e = 2718281 | |
19 | 15 | let positiveZ = if ((0 > z)) | |
20 | 16 | then -(z) | |
21 | 17 | else z | |
22 | - | let expPart = fraction(e, base, positiveZ) | |
18 | + | let scaledZ = (positiveZ / 10000) | |
19 | + | let expPart = fraction(e, base, scaledZ) | |
23 | 20 | let sigValue = fraction(base, (base + expPart), base) | |
24 | 21 | $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expPart"), expPart), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
25 | 22 | } | |
28 | 25 | func forwardPassLayer1 (input,weights,biases,debugPrefix) = { | |
29 | 26 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
30 | 27 | let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1]) | |
31 | - | let sum2 = ((fraction(input[0], weights[2][0], 1000000) + fraction(input[1], weights[2][1], 1000000)) + biases[2]) | |
32 | - | let sum3 = ((fraction(input[0], weights[3][0], 1000000) + fraction(input[1], weights[3][1], 1000000)) + biases[3]) | |
33 | - | let $t014931539 = sigmoid(sum0, "Layer1N0") | |
34 | - | let debug0 = $t014931539._1 | |
35 | - | let sig0 = $t014931539._2 | |
36 | - | let $t015441590 = sigmoid(sum1, "Layer1N1") | |
37 | - | let debug1 = $t015441590._1 | |
38 | - | let sig1 = $t015441590._2 | |
39 | - | let $t015951641 = sigmoid(sum2, "Layer1N2") | |
40 | - | let debug2 = $t015951641._1 | |
41 | - | let sig2 = $t015951641._2 | |
42 | - | let $t016461692 = sigmoid(sum3, "Layer1N3") | |
43 | - | let debug3 = $t016461692._1 | |
44 | - | let sig3 = $t016461692._2 | |
45 | - | $Tuple2([sig0, sig1, sig2, sig3], (((debug0 ++ debug1) ++ debug2) ++ debug3)) | |
28 | + | let $t011451191 = sigmoid(sum0, "Layer1N0") | |
29 | + | let debug0 = $t011451191._1 | |
30 | + | let sig0 = $t011451191._2 | |
31 | + | let $t011961242 = sigmoid(sum1, "Layer1N1") | |
32 | + | let debug1 = $t011961242._1 | |
33 | + | let sig1 = $t011961242._2 | |
34 | + | $Tuple2([sig0, sig1], (debug0 ++ debug1)) | |
46 | 35 | } | |
47 | 36 | ||
48 | 37 | ||
49 | 38 | func forwardPassLayer2 (input,weights,biases,debugPrefix) = { | |
50 | - | let sum0 = ((((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + fraction(input[2], weights[0][2], 1000000)) + fraction(input[3], weights[0][3], 1000000)) + biases[0]) | |
51 | - | let sum1 = ((((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + fraction(input[2], weights[1][2], 1000000)) + fraction(input[3], weights[1][3], 1000000)) + biases[1]) | |
52 | - | let $t022882334 = sigmoid(sum0, "Layer2N0") | |
53 | - | let debug0 = $t022882334._1 | |
54 | - | let sig0 = $t022882334._2 | |
55 | - | let $t023392385 = sigmoid(sum1, "Layer2N1") | |
56 | - | let debug1 = $t023392385._1 | |
57 | - | let sig1 = $t023392385._2 | |
58 | - | $Tuple2([sig0, sig1], (debug0 ++ debug1)) | |
59 | - | } | |
60 | - | ||
61 | - | ||
62 | - | func forwardPassLayer3 (input,weights,biases,debugPrefix) = { | |
63 | 39 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
64 | - | let $ | |
65 | - | let debug0 = $ | |
66 | - | let sig0 = $ | |
40 | + | let $t015111557 = sigmoid(sum0, "Layer2N0") | |
41 | + | let debug0 = $t015111557._1 | |
42 | + | let sig0 = $t015111557._2 | |
67 | 43 | $Tuple2(sig0, debug0) | |
68 | 44 | } | |
69 | 45 | ||
77 | 53 | then 1000000 | |
78 | 54 | else 0 | |
79 | 55 | let inputs = [scaledInput1, scaledInput2] | |
80 | - | let $t029513049 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
81 | - | let layer1Output = $t029513049._1 | |
82 | - | let debugLayer1 = $t029513049._2 | |
83 | - | let $t030543158 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
84 | - | let layer2Output = $t030543158._1 | |
85 | - | let debugLayer2 = $t030543158._2 | |
86 | - | let $t031633267 = forwardPassLayer3(layer2Output, layer3Weights, layer3Biases, "Layer3") | |
87 | - | let layer3Output = $t031633267._1 | |
88 | - | let debugLayer3 = $t031633267._2 | |
89 | - | ((([IntegerEntry("result", layer3Output)] ++ debugLayer1) ++ debugLayer2) ++ debugLayer3) | |
56 | + | let $t018081906 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
57 | + | let layer1Output = $t018081906._1 | |
58 | + | let debugLayer1 = $t018081906._2 | |
59 | + | let $t019112015 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
60 | + | let layer2Output = $t019112015._1 | |
61 | + | let debugLayer2 = $t019112015._2 | |
62 | + | (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2) | |
90 | 63 | } | |
91 | 64 | ||
92 | 65 |
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let layer1Weights = [[ | |
4 | + | let layer1Weights = [[600497, 600733], [414197, 414253]] | |
5 | 5 | ||
6 | - | let layer1Biases = [- | |
6 | + | let layer1Biases = [-259050, -635637] | |
7 | 7 | ||
8 | - | let layer2Weights = [[ | |
8 | + | let layer2Weights = [[832965, -897142]] | |
9 | 9 | ||
10 | - | let layer2Biases = [-316162, 294501] | |
11 | - | ||
12 | - | let layer3Weights = [[-893964, 951736]] | |
13 | - | ||
14 | - | let layer3Biases = [-19235] | |
10 | + | let layer2Biases = [-381179] | |
15 | 11 | ||
16 | 12 | func sigmoid (z,debugPrefix) = { | |
17 | 13 | let e = 2718281 | |
18 | 14 | let base = 1000000 | |
19 | 15 | let positiveZ = if ((0 > z)) | |
20 | 16 | then -(z) | |
21 | 17 | else z | |
22 | - | let expPart = fraction(e, base, positiveZ) | |
18 | + | let scaledZ = (positiveZ / 10000) | |
19 | + | let expPart = fraction(e, base, scaledZ) | |
23 | 20 | let sigValue = fraction(base, (base + expPart), base) | |
24 | 21 | $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expPart"), expPart), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
25 | 22 | } | |
26 | 23 | ||
27 | 24 | ||
28 | 25 | func forwardPassLayer1 (input,weights,biases,debugPrefix) = { | |
29 | 26 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
30 | 27 | let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1]) | |
31 | - | let sum2 = ((fraction(input[0], weights[2][0], 1000000) + fraction(input[1], weights[2][1], 1000000)) + biases[2]) | |
32 | - | let sum3 = ((fraction(input[0], weights[3][0], 1000000) + fraction(input[1], weights[3][1], 1000000)) + biases[3]) | |
33 | - | let $t014931539 = sigmoid(sum0, "Layer1N0") | |
34 | - | let debug0 = $t014931539._1 | |
35 | - | let sig0 = $t014931539._2 | |
36 | - | let $t015441590 = sigmoid(sum1, "Layer1N1") | |
37 | - | let debug1 = $t015441590._1 | |
38 | - | let sig1 = $t015441590._2 | |
39 | - | let $t015951641 = sigmoid(sum2, "Layer1N2") | |
40 | - | let debug2 = $t015951641._1 | |
41 | - | let sig2 = $t015951641._2 | |
42 | - | let $t016461692 = sigmoid(sum3, "Layer1N3") | |
43 | - | let debug3 = $t016461692._1 | |
44 | - | let sig3 = $t016461692._2 | |
45 | - | $Tuple2([sig0, sig1, sig2, sig3], (((debug0 ++ debug1) ++ debug2) ++ debug3)) | |
28 | + | let $t011451191 = sigmoid(sum0, "Layer1N0") | |
29 | + | let debug0 = $t011451191._1 | |
30 | + | let sig0 = $t011451191._2 | |
31 | + | let $t011961242 = sigmoid(sum1, "Layer1N1") | |
32 | + | let debug1 = $t011961242._1 | |
33 | + | let sig1 = $t011961242._2 | |
34 | + | $Tuple2([sig0, sig1], (debug0 ++ debug1)) | |
46 | 35 | } | |
47 | 36 | ||
48 | 37 | ||
49 | 38 | func forwardPassLayer2 (input,weights,biases,debugPrefix) = { | |
50 | - | let sum0 = ((((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + fraction(input[2], weights[0][2], 1000000)) + fraction(input[3], weights[0][3], 1000000)) + biases[0]) | |
51 | - | let sum1 = ((((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + fraction(input[2], weights[1][2], 1000000)) + fraction(input[3], weights[1][3], 1000000)) + biases[1]) | |
52 | - | let $t022882334 = sigmoid(sum0, "Layer2N0") | |
53 | - | let debug0 = $t022882334._1 | |
54 | - | let sig0 = $t022882334._2 | |
55 | - | let $t023392385 = sigmoid(sum1, "Layer2N1") | |
56 | - | let debug1 = $t023392385._1 | |
57 | - | let sig1 = $t023392385._2 | |
58 | - | $Tuple2([sig0, sig1], (debug0 ++ debug1)) | |
59 | - | } | |
60 | - | ||
61 | - | ||
62 | - | func forwardPassLayer3 (input,weights,biases,debugPrefix) = { | |
63 | 39 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
64 | - | let $ | |
65 | - | let debug0 = $ | |
66 | - | let sig0 = $ | |
40 | + | let $t015111557 = sigmoid(sum0, "Layer2N0") | |
41 | + | let debug0 = $t015111557._1 | |
42 | + | let sig0 = $t015111557._2 | |
67 | 43 | $Tuple2(sig0, debug0) | |
68 | 44 | } | |
69 | 45 | ||
70 | 46 | ||
71 | 47 | @Callable(i) | |
72 | 48 | func predict (input1,input2) = { | |
73 | 49 | let scaledInput1 = if ((input1 == 1)) | |
74 | 50 | then 1000000 | |
75 | 51 | else 0 | |
76 | 52 | let scaledInput2 = if ((input2 == 1)) | |
77 | 53 | then 1000000 | |
78 | 54 | else 0 | |
79 | 55 | let inputs = [scaledInput1, scaledInput2] | |
80 | - | let $t029513049 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
81 | - | let layer1Output = $t029513049._1 | |
82 | - | let debugLayer1 = $t029513049._2 | |
83 | - | let $t030543158 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
84 | - | let layer2Output = $t030543158._1 | |
85 | - | let debugLayer2 = $t030543158._2 | |
86 | - | let $t031633267 = forwardPassLayer3(layer2Output, layer3Weights, layer3Biases, "Layer3") | |
87 | - | let layer3Output = $t031633267._1 | |
88 | - | let debugLayer3 = $t031633267._2 | |
89 | - | ((([IntegerEntry("result", layer3Output)] ++ debugLayer1) ++ debugLayer2) ++ debugLayer3) | |
56 | + | let $t018081906 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
57 | + | let layer1Output = $t018081906._1 | |
58 | + | let debugLayer1 = $t018081906._2 | |
59 | + | let $t019112015 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
60 | + | let layer2Output = $t019112015._1 | |
61 | + | let debugLayer2 = $t019112015._2 | |
62 | + | (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2) | |
90 | 63 | } | |
91 | 64 | ||
92 | 65 |
github/deemru/w8io/169f3d6 30.64 ms ◑