tx · 2EAsscTWTcXLbZe4WsBMSSeTj11Qf1Abr2c6XurS2kqL 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY: -0.01000000 Waves 2024.04.27 17:15 [3081359] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves
{ "type": 13, "id": "2EAsscTWTcXLbZe4WsBMSSeTj11Qf1Abr2c6XurS2kqL", "fee": 1000000, "feeAssetId": null, "timestamp": 1714227234026, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "2q1e3UguMMubQmyAwRhfjfj7Qzrb1gJ7QxKMUsqSyqeJWUUo49ThpfxB3qnt1L6gqQktgt5mEX4dTMkTAAiunpho" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAcAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmxCQAETAAAAAIAAAAAAAAJKp0FAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLQUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwWCQAETAAAAAIA///////2TQsFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcUJAARMAAAAAgD///////JPigUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAAB3NpZ21vaWQAAAACAAAAAXoAAAALZGVidWdQcmVmaXgEAAAAAWUAAAAAAAApekkEAAAABGJhc2UAAAAAAAAPQkAEAAAACXBvc2l0aXZlWgMJAABmAAAAAgAAAAAAAAAAAAUAAAABegkBAAAAAS0AAAABBQAAAAF6BQAAAAF6BAAAAAdzY2FsZWRaCQAAaQAAAAIFAAAACXBvc2l0aXZlWgAAAAAAAAAnEAQAAAAHZXhwUGFydAkAAGsAAAADBQAAAAFlBQAAAARiYXNlBQAAAAdzY2FsZWRaBAAAAAhzaWdWYWx1ZQkAAGsAAAADBQAAAARiYXNlCQAAZAAAAAIFAAAABGJhc2UFAAAAB2V4cFBhcnQFAAAABGJhc2UJAAUUAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgkAASwAAAACBQAAAAtkZWJ1Z1ByZWZpeAIAAAAJcG9zaXRpdmVaBQAAAAlwb3NpdGl2ZVoJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAAB2V4cFBhcnQFAAAAB2V4cFBhcnQJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACHNpZ1ZhbHVlBQAAAAhzaWdWYWx1ZQUAAAADbmlsBQAAAAhzaWdWYWx1ZQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEAAAABWlucHV0AAAAB3dlaWdodHMAAAAGYmlhc2VzAAAAC2RlYnVnUHJlZml4BAAAAARzdW0wCQAAZAAAAAIJAABkAAAAAgkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAA9CQAkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAAEAAAABHN1bTEJAABkAAAAAgkAAGQAAAACCQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAD0JACQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAABAAAAAAAAAAABAAAAAAAAD0JACQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAQQAAAALJHQwMTE0NTExOTEJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMAIAAAAITGF5ZXIxTjAEAAAABmRlYnVnMAgFAAAACyR0MDExNDUxMTkxAAAAAl8xBAAAAARzaWcwCAUAAAALJHQwMTE0NTExOTEAAAACXzIEAAAACyR0MDExOTYxMjQyCQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTECAAAACExheWVyMU4xBAAAAAZkZWJ1ZzEIBQAAAAskdDAxMTk2MTI0MgAAAAJfMQQAAAAEc2lnMQgFAAAACyR0MDExOTYxMjQyAAAAAl8yCQAFFAAAAAIJAARMAAAAAgUAAAAEc2lnMAkABEwAAAACBQAAAARzaWcxBQAAAANuaWwJAAROAAAAAgUAAAAGZGVidWcwBQAAAAZkZWJ1ZzEBAAAAEWZvcndhcmRQYXNzTGF5ZXIyAAAABAAAAAVpbnB1dAAAAAd3ZWlnaHRzAAAABmJpYXNlcwAAAAtkZWJ1Z1ByZWZpeAQAAAAEc3VtMAkAAGQAAAACCQAAZAAAAAIJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPQkAJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAPQkAJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAABAAAAAskdDAxNTExMTU1NwkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0wAgAAAAhMYXllcjJOMAQAAAAGZGVidWcwCAUAAAALJHQwMTUxMTE1NTcAAAACXzEEAAAABHNpZzAIBQAAAAskdDAxNTExMTU1NwAAAAJfMgkABRQAAAACBQAAAARzaWcwBQAAAAZkZWJ1ZzAAAAABAAAAAWkBAAAAB3ByZWRpY3QAAAACAAAABmlucHV0MQAAAAZpbnB1dDIEAAAADHNjYWxlZElucHV0MQMJAAAAAAAAAgUAAAAGaW5wdXQxAAAAAAAAAAABAAAAAAAAD0JAAAAAAAAAAAAABAAAAAxzY2FsZWRJbnB1dDIDCQAAAAAAAAIFAAAABmlucHV0MgAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAAGaW5wdXRzCQAETAAAAAIFAAAADHNjYWxlZElucHV0MQkABEwAAAACBQAAAAxzY2FsZWRJbnB1dDIFAAAAA25pbAQAAAALJHQwMTgwODE5MDYJAQAAABFmb3J3YXJkUGFzc0xheWVyMQAAAAQFAAAABmlucHV0cwUAAAANbGF5ZXIxV2VpZ2h0cwUAAAAMbGF5ZXIxQmlhc2VzAgAAAAZMYXllcjEEAAAADGxheWVyMU91dHB1dAgFAAAACyR0MDE4MDgxOTA2AAAAAl8xBAAAAAtkZWJ1Z0xheWVyMQgFAAAACyR0MDE4MDgxOTA2AAAAAl8yBAAAAAskdDAxOTExMjAxNQkBAAAAEWZvcndhcmRQYXNzTGF5ZXIyAAAABAUAAAAMbGF5ZXIxT3V0cHV0BQAAAA1sYXllcjJXZWlnaHRzBQAAAAxsYXllcjJCaWFzZXMCAAAABkxheWVyMgQAAAAMbGF5ZXIyT3V0cHV0CAUAAAALJHQwMTkxMTIwMTUAAAACXzEEAAAAC2RlYnVnTGF5ZXIyCAUAAAALJHQwMTkxMTIwMTUAAAACXzIJAAROAAAAAgkABE4AAAACCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACAgAAAAZyZXN1bHQFAAAADGxheWVyMk91dHB1dAUAAAADbmlsBQAAAAtkZWJ1Z0xheWVyMQUAAAALZGVidWdMYXllcjIAAAAA+5sCSw==", "height": 3081359, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: 63HL2ET9udUcXr31RyWXVSbexg4dmVv2RJVheQd1HjGm Next: 5hqRJoKMtNcDRPoU3dMpZhfLar5vJieTpCzaPJWSNuV7 Full:
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let a = [[ | |
4 | + | let a = [[600497, 600733], [414197, 414253]] | |
5 | 5 | ||
6 | - | let b = [- | |
6 | + | let b = [-259050, -635637] | |
7 | 7 | ||
8 | - | let c = [[ | |
8 | + | let c = [[832965, -897142]] | |
9 | 9 | ||
10 | - | let d = [- | |
10 | + | let d = [-381179] | |
11 | 11 | ||
12 | - | let e = [[-893964, 951736]] | |
13 | - | ||
14 | - | let f = [-19235] | |
15 | - | ||
16 | - | func g (h,i) = { | |
17 | - | let j = 2718281 | |
18 | - | let k = 1000000 | |
19 | - | let l = if ((0 > h)) | |
20 | - | then -(h) | |
21 | - | else h | |
22 | - | let m = fraction(j, k, l) | |
23 | - | let n = fraction(k, (k + m), k) | |
24 | - | $Tuple2([IntegerEntry((i + "positiveZ"), l), IntegerEntry((i + "expPart"), m), IntegerEntry((i + "sigValue"), n)], n) | |
12 | + | func e (f,g) = { | |
13 | + | let h = 2718281 | |
14 | + | let i = 1000000 | |
15 | + | let j = if ((0 > f)) | |
16 | + | then -(f) | |
17 | + | else f | |
18 | + | let k = (j / 10000) | |
19 | + | let l = fraction(h, i, k) | |
20 | + | let m = fraction(i, (i + l), i) | |
21 | + | $Tuple2([IntegerEntry((g + "positiveZ"), j), IntegerEntry((g + "expPart"), l), IntegerEntry((g + "sigValue"), m)], m) | |
25 | 22 | } | |
26 | 23 | ||
27 | 24 | ||
28 | - | func o (p,q,r,i) = { | |
29 | - | let s = ((fraction(p[0], q[0][0], 1000000) + fraction(p[1], q[0][1], 1000000)) + r[0]) | |
30 | - | let t = ((fraction(p[0], q[1][0], 1000000) + fraction(p[1], q[1][1], 1000000)) + r[1]) | |
31 | - | let u = ((fraction(p[0], q[2][0], 1000000) + fraction(p[1], q[2][1], 1000000)) + r[2]) | |
32 | - | let v = ((fraction(p[0], q[3][0], 1000000) + fraction(p[1], q[3][1], 1000000)) + r[3]) | |
33 | - | let w = g(s, "Layer1N0") | |
25 | + | func n (o,p,q,g) = { | |
26 | + | let r = ((fraction(o[0], p[0][0], 1000000) + fraction(o[1], p[0][1], 1000000)) + q[0]) | |
27 | + | let s = ((fraction(o[0], p[1][0], 1000000) + fraction(o[1], p[1][1], 1000000)) + q[1]) | |
28 | + | let t = e(r, "Layer1N0") | |
29 | + | let u = t._1 | |
30 | + | let v = t._2 | |
31 | + | let w = e(s, "Layer1N1") | |
34 | 32 | let x = w._1 | |
35 | 33 | let y = w._2 | |
36 | - | let z = g(t, "Layer1N1") | |
37 | - | let A = z._1 | |
38 | - | let B = z._2 | |
39 | - | let C = g(u, "Layer1N2") | |
40 | - | let D = C._1 | |
41 | - | let E = C._2 | |
42 | - | let F = g(v, "Layer1N3") | |
43 | - | let G = F._1 | |
44 | - | let H = F._2 | |
45 | - | $Tuple2([y, B, E, H], (((x ++ A) ++ D) ++ G)) | |
34 | + | $Tuple2([v, y], (u ++ x)) | |
46 | 35 | } | |
47 | 36 | ||
48 | 37 | ||
49 | - | func I (p,q,r,i) = { | |
50 | - | let s = ((((fraction(p[0], q[0][0], 1000000) + fraction(p[1], q[0][1], 1000000)) + fraction(p[2], q[0][2], 1000000)) + fraction(p[3], q[0][3], 1000000)) + r[0]) | |
51 | - | let t = ((((fraction(p[0], q[1][0], 1000000) + fraction(p[1], q[1][1], 1000000)) + fraction(p[2], q[1][2], 1000000)) + fraction(p[3], q[1][3], 1000000)) + r[1]) | |
52 | - | let J = g(s, "Layer2N0") | |
53 | - | let x = J._1 | |
54 | - | let y = J._2 | |
55 | - | let K = g(t, "Layer2N1") | |
56 | - | let A = K._1 | |
57 | - | let B = K._2 | |
58 | - | $Tuple2([y, B], (x ++ A)) | |
38 | + | func z (o,p,q,g) = { | |
39 | + | let r = ((fraction(o[0], p[0][0], 1000000) + fraction(o[1], p[0][1], 1000000)) + q[0]) | |
40 | + | let A = e(r, "Layer2N0") | |
41 | + | let u = A._1 | |
42 | + | let v = A._2 | |
43 | + | $Tuple2(v, u) | |
59 | 44 | } | |
60 | 45 | ||
61 | 46 | ||
62 | - | func L (p,q,r,i) = { | |
63 | - | let s = ((fraction(p[0], q[0][0], 1000000) + fraction(p[1], q[0][1], 1000000)) + r[0]) | |
64 | - | let M = g(s, "Layer3N0") | |
65 | - | let x = M._1 | |
66 | - | let y = M._2 | |
67 | - | $Tuple2(y, x) | |
68 | - | } | |
69 | - | ||
70 | - | ||
71 | - | @Callable(N) | |
72 | - | func predict (O,P) = { | |
73 | - | let Q = if ((O == 1)) | |
47 | + | @Callable(B) | |
48 | + | func predict (C,D) = { | |
49 | + | let E = if ((C == 1)) | |
74 | 50 | then 1000000 | |
75 | 51 | else 0 | |
76 | - | let | |
52 | + | let F = if ((D == 1)) | |
77 | 53 | then 1000000 | |
78 | 54 | else 0 | |
79 | - | let S = [Q, R] | |
80 | - | let T = o(S, a, b, "Layer1") | |
81 | - | let U = T._1 | |
82 | - | let V = T._2 | |
83 | - | let W = I(U, c, d, "Layer2") | |
84 | - | let X = W._1 | |
85 | - | let Y = W._2 | |
86 | - | let Z = L(X, e, f, "Layer3") | |
87 | - | let aa = Z._1 | |
88 | - | let ab = Z._2 | |
89 | - | ((([IntegerEntry("result", aa)] ++ V) ++ Y) ++ ab) | |
55 | + | let G = [E, F] | |
56 | + | let H = n(G, a, b, "Layer1") | |
57 | + | let I = H._1 | |
58 | + | let J = H._2 | |
59 | + | let K = z(I, c, d, "Layer2") | |
60 | + | let L = K._1 | |
61 | + | let M = K._2 | |
62 | + | (([IntegerEntry("result", L)] ++ J) ++ M) | |
90 | 63 | } | |
91 | 64 | ||
92 | 65 |
github/deemru/w8io/169f3d6 36.66 ms ◑