tx · HwyC8YbVJFQ1rUZWdjFea9Ep2RPaYKUJEWTMEip3U51S 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY: -0.01000000 Waves 2024.04.28 11:00 [3082438] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves
{ "type": 13, "id": "HwyC8YbVJFQ1rUZWdjFea9Ep2RPaYKUJEWTMEip3U51S", "fee": 1000000, "feeAssetId": null, "timestamp": 1714291228015, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "4maBEyLzhchsce2W2zeUVGkxuTcy7Q5nkXGnUfkfafZtf5aFMNBEhTdFuTLRUjnKEk4u4cD8rJHWxerPji1J89Xs" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAgAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmxCQAETAAAAAIAAAAAAAAJKpwFAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLAUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwVCQAETAAAAAIA///////2TQsFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcYJAARMAAAAAgD///////JPiwUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAAEWV4cF9hcHByb3hpbWF0aW9uAAAAAQAAAAF4BAAAAAFlAAAAAAAAKXpJBAAAAAdmYWN0b3IxBQAAAAF4BAAAAAdmYWN0b3IyCQAAawAAAAMJAABoAAAAAgUAAAABeAUAAAABeAkAAGgAAAACAAAAAAAAAAACAAAAAAAAD0JAAAAAAAAAD0JABAAAAAdmYWN0b3IzCQAAawAAAAMJAABoAAAAAgkAAGgAAAACBQAAAAF4BQAAAAF4BQAAAAF4CQAAaAAAAAIJAABoAAAAAgAAAAAAAAAABgAAAAAAAA9CQAAAAAAAAA9CQAAAAAAAAA9CQAQAAAAKZXhwX2FwcHJveAkAAGQAAAACCQAAZAAAAAIJAABkAAAAAgAAAAAAAA9CQAUAAAAHZmFjdG9yMQUAAAAHZmFjdG9yMgUAAAAHZmFjdG9yMwUAAAAKZXhwX2FwcHJveAEAAAAHc2lnbW9pZAAAAAIAAAABegAAAAtkZWJ1Z1ByZWZpeAQAAAAEYmFzZQAAAAAAAA9CQAQAAAAJcG9zaXRpdmVaAwkAAGYAAAACAAAAAAAAAAAABQAAAAF6CQEAAAABLQAAAAEFAAAAAXoFAAAAAXoEAAAACGV4cFZhbHVlCQEAAAARZXhwX2FwcHJveGltYXRpb24AAAABBQAAAAlwb3NpdGl2ZVoEAAAACHNpZ1ZhbHVlCQAAawAAAAMFAAAABGJhc2UJAABkAAAAAgUAAAAEYmFzZQUAAAAIZXhwVmFsdWUFAAAABGJhc2UJAAUUAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgkAASwAAAACBQAAAAtkZWJ1Z1ByZWZpeAIAAAAJcG9zaXRpdmVaBQAAAAlwb3NpdGl2ZVoJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACGV4cFZhbHVlBQAAAAhleHBWYWx1ZQkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgkAASwAAAACBQAAAAtkZWJ1Z1ByZWZpeAIAAAAIc2lnVmFsdWUFAAAACHNpZ1ZhbHVlBQAAAANuaWwFAAAACHNpZ1ZhbHVlAQAAABFmb3J3YXJkUGFzc0xheWVyMQAAAAQAAAAFaW5wdXQAAAAHd2VpZ2h0cwAAAAZiaWFzZXMAAAALZGVidWdQcmVmaXgEAAAABHN1bTAJAABkAAAAAgkAAGQAAAACCQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0JACQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAD0JACQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAAQAAAAEc3VtMQkAAGQAAAACCQAAZAAAAAIJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAPQkAJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAEAAAAAAAAAAAEAAAAAAAAPQkAJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAABBAAAAAskdDAxMzc2MTQyMgkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0wAgAAAAhMYXllcjFOMAQAAAAGZGVidWcwCAUAAAALJHQwMTM3NjE0MjIAAAACXzEEAAAABHNpZzAIBQAAAAskdDAxMzc2MTQyMgAAAAJfMgQAAAALJHQwMTQyNzE0NzMJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMQIAAAAITGF5ZXIxTjEEAAAABmRlYnVnMQgFAAAACyR0MDE0MjcxNDczAAAAAl8xBAAAAARzaWcxCAUAAAALJHQwMTQyNzE0NzMAAAACXzIJAAUUAAAAAgkABEwAAAACBQAAAARzaWcwCQAETAAAAAIFAAAABHNpZzEFAAAAA25pbAkABE4AAAACBQAAAAZkZWJ1ZzAFAAAABmRlYnVnMQEAAAARZm9yd2FyZFBhc3NMYXllcjIAAAAEAAAABWlucHV0AAAAB3dlaWdodHMAAAAGYmlhc2VzAAAAC2RlYnVnUHJlZml4BAAAAARzdW0wCQAAZAAAAAIJAABkAAAAAgkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAA9CQAkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAAEAAAACyR0MDE3NDIxNzg4CQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTACAAAACExheWVyMk4wBAAAAAZkZWJ1ZzAIBQAAAAskdDAxNzQyMTc4OAAAAAJfMQQAAAAEc2lnMAgFAAAACyR0MDE3NDIxNzg4AAAAAl8yCQAFFAAAAAIFAAAABHNpZzAFAAAABmRlYnVnMAAAAAEAAAABaQEAAAAHcHJlZGljdAAAAAIAAAAGaW5wdXQxAAAABmlucHV0MgQAAAAMc2NhbGVkSW5wdXQxAwkAAAAAAAACBQAAAAZpbnB1dDEAAAAAAAAAAAEAAAAAAAAPQkAAAAAAAAAAAAAEAAAADHNjYWxlZElucHV0MgMJAAAAAAAAAgUAAAAGaW5wdXQyAAAAAAAAAAABAAAAAAAAD0JAAAAAAAAAAAAABAAAAAZpbnB1dHMJAARMAAAAAgUAAAAMc2NhbGVkSW5wdXQxCQAETAAAAAIFAAAADHNjYWxlZElucHV0MgUAAAADbmlsBAAAAAskdDAyMDM5MjEzNwkBAAAAEWZvcndhcmRQYXNzTGF5ZXIxAAAABAUAAAAGaW5wdXRzBQAAAA1sYXllcjFXZWlnaHRzBQAAAAxsYXllcjFCaWFzZXMCAAAABkxheWVyMQQAAAAMbGF5ZXIxT3V0cHV0CAUAAAALJHQwMjAzOTIxMzcAAAACXzEEAAAAC2RlYnVnTGF5ZXIxCAUAAAALJHQwMjAzOTIxMzcAAAACXzIEAAAACyR0MDIxNDIyMjQ2CQEAAAARZm9yd2FyZFBhc3NMYXllcjIAAAAEBQAAAAxsYXllcjFPdXRwdXQFAAAADWxheWVyMldlaWdodHMFAAAADGxheWVyMkJpYXNlcwIAAAAGTGF5ZXIyBAAAAAxsYXllcjJPdXRwdXQIBQAAAAskdDAyMTQyMjI0NgAAAAJfMQQAAAALZGVidWdMYXllcjIIBQAAAAskdDAyMTQyMjI0NgAAAAJfMgkABE4AAAACCQAETgAAAAIJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAICAAAABnJlc3VsdAUAAAAMbGF5ZXIyT3V0cHV0BQAAAANuaWwFAAAAC2RlYnVnTGF5ZXIxBQAAAAtkZWJ1Z0xheWVyMgAAAAChOTi+", "height": 3082438, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: FiMyqvSHG2XofDqbcQV7uKntJhFJuUqyBaApsxEwfpwT Next: 8cdRbGHsNfmgK7NCToFRuLF7cqYNwNiYjBcET9w8VCPR Diff:
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let layer1Weights = [[ | |
4 | + | let layer1Weights = [[600497, 600732], [414197, 414252]] | |
5 | 5 | ||
6 | - | let layer1Biases = [- | |
6 | + | let layer1Biases = [-259051, -635637] | |
7 | 7 | ||
8 | - | let layer2Weights = [[ | |
8 | + | let layer2Weights = [[832966, -897141]] | |
9 | 9 | ||
10 | 10 | let layer2Biases = [-381179] | |
11 | 11 | ||
12 | + | func exp_approximation (x) = { | |
13 | + | let e = 2718281 | |
14 | + | let factor1 = x | |
15 | + | let factor2 = fraction((x * x), (2 * 1000000), 1000000) | |
16 | + | let factor3 = fraction(((x * x) * x), ((6 * 1000000) * 1000000), 1000000) | |
17 | + | let exp_approx = (((1000000 + factor1) + factor2) + factor3) | |
18 | + | exp_approx | |
19 | + | } | |
20 | + | ||
21 | + | ||
12 | 22 | func sigmoid (z,debugPrefix) = { | |
13 | - | let e = 2718281 | |
14 | 23 | let base = 1000000 | |
15 | 24 | let positiveZ = if ((0 > z)) | |
16 | 25 | then -(z) | |
17 | 26 | else z | |
18 | - | let | |
19 | - | let sigValue = fraction(base, (base + | |
20 | - | $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + " | |
27 | + | let expValue = exp_approximation(positiveZ) | |
28 | + | let sigValue = fraction(base, (base + expValue), base) | |
29 | + | $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
21 | 30 | } | |
22 | 31 | ||
23 | 32 | ||
24 | 33 | func forwardPassLayer1 (input,weights,biases,debugPrefix) = { | |
25 | 34 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
26 | 35 | let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1]) | |
27 | - | let $ | |
28 | - | let debug0 = $ | |
29 | - | let sig0 = $ | |
30 | - | let $ | |
31 | - | let debug1 = $ | |
32 | - | let sig1 = $ | |
36 | + | let $t013761422 = sigmoid(sum0, "Layer1N0") | |
37 | + | let debug0 = $t013761422._1 | |
38 | + | let sig0 = $t013761422._2 | |
39 | + | let $t014271473 = sigmoid(sum1, "Layer1N1") | |
40 | + | let debug1 = $t014271473._1 | |
41 | + | let sig1 = $t014271473._2 | |
33 | 42 | $Tuple2([sig0, sig1], (debug0 ++ debug1)) | |
34 | 43 | } | |
35 | 44 | ||
36 | 45 | ||
37 | 46 | func forwardPassLayer2 (input,weights,biases,debugPrefix) = { | |
38 | 47 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
39 | - | let $ | |
40 | - | let debug0 = $ | |
41 | - | let sig0 = $ | |
48 | + | let $t017421788 = sigmoid(sum0, "Layer2N0") | |
49 | + | let debug0 = $t017421788._1 | |
50 | + | let sig0 = $t017421788._2 | |
42 | 51 | $Tuple2(sig0, debug0) | |
43 | 52 | } | |
44 | 53 | ||
52 | 61 | then 1000000 | |
53 | 62 | else 0 | |
54 | 63 | let inputs = [scaledInput1, scaledInput2] | |
55 | - | let $ | |
56 | - | let layer1Output = $ | |
57 | - | let debugLayer1 = $ | |
58 | - | let $ | |
59 | - | let layer2Output = $ | |
60 | - | let debugLayer2 = $ | |
64 | + | let $t020392137 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
65 | + | let layer1Output = $t020392137._1 | |
66 | + | let debugLayer1 = $t020392137._2 | |
67 | + | let $t021422246 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
68 | + | let layer2Output = $t021422246._1 | |
69 | + | let debugLayer2 = $t021422246._2 | |
61 | 70 | (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2) | |
62 | 71 | } | |
63 | 72 |
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let layer1Weights = [[ | |
4 | + | let layer1Weights = [[600497, 600732], [414197, 414252]] | |
5 | 5 | ||
6 | - | let layer1Biases = [- | |
6 | + | let layer1Biases = [-259051, -635637] | |
7 | 7 | ||
8 | - | let layer2Weights = [[ | |
8 | + | let layer2Weights = [[832966, -897141]] | |
9 | 9 | ||
10 | 10 | let layer2Biases = [-381179] | |
11 | 11 | ||
12 | + | func exp_approximation (x) = { | |
13 | + | let e = 2718281 | |
14 | + | let factor1 = x | |
15 | + | let factor2 = fraction((x * x), (2 * 1000000), 1000000) | |
16 | + | let factor3 = fraction(((x * x) * x), ((6 * 1000000) * 1000000), 1000000) | |
17 | + | let exp_approx = (((1000000 + factor1) + factor2) + factor3) | |
18 | + | exp_approx | |
19 | + | } | |
20 | + | ||
21 | + | ||
12 | 22 | func sigmoid (z,debugPrefix) = { | |
13 | - | let e = 2718281 | |
14 | 23 | let base = 1000000 | |
15 | 24 | let positiveZ = if ((0 > z)) | |
16 | 25 | then -(z) | |
17 | 26 | else z | |
18 | - | let | |
19 | - | let sigValue = fraction(base, (base + | |
20 | - | $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + " | |
27 | + | let expValue = exp_approximation(positiveZ) | |
28 | + | let sigValue = fraction(base, (base + expValue), base) | |
29 | + | $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
21 | 30 | } | |
22 | 31 | ||
23 | 32 | ||
24 | 33 | func forwardPassLayer1 (input,weights,biases,debugPrefix) = { | |
25 | 34 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
26 | 35 | let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1]) | |
27 | - | let $ | |
28 | - | let debug0 = $ | |
29 | - | let sig0 = $ | |
30 | - | let $ | |
31 | - | let debug1 = $ | |
32 | - | let sig1 = $ | |
36 | + | let $t013761422 = sigmoid(sum0, "Layer1N0") | |
37 | + | let debug0 = $t013761422._1 | |
38 | + | let sig0 = $t013761422._2 | |
39 | + | let $t014271473 = sigmoid(sum1, "Layer1N1") | |
40 | + | let debug1 = $t014271473._1 | |
41 | + | let sig1 = $t014271473._2 | |
33 | 42 | $Tuple2([sig0, sig1], (debug0 ++ debug1)) | |
34 | 43 | } | |
35 | 44 | ||
36 | 45 | ||
37 | 46 | func forwardPassLayer2 (input,weights,biases,debugPrefix) = { | |
38 | 47 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
39 | - | let $ | |
40 | - | let debug0 = $ | |
41 | - | let sig0 = $ | |
48 | + | let $t017421788 = sigmoid(sum0, "Layer2N0") | |
49 | + | let debug0 = $t017421788._1 | |
50 | + | let sig0 = $t017421788._2 | |
42 | 51 | $Tuple2(sig0, debug0) | |
43 | 52 | } | |
44 | 53 | ||
45 | 54 | ||
46 | 55 | @Callable(i) | |
47 | 56 | func predict (input1,input2) = { | |
48 | 57 | let scaledInput1 = if ((input1 == 1)) | |
49 | 58 | then 1000000 | |
50 | 59 | else 0 | |
51 | 60 | let scaledInput2 = if ((input2 == 1)) | |
52 | 61 | then 1000000 | |
53 | 62 | else 0 | |
54 | 63 | let inputs = [scaledInput1, scaledInput2] | |
55 | - | let $ | |
56 | - | let layer1Output = $ | |
57 | - | let debugLayer1 = $ | |
58 | - | let $ | |
59 | - | let layer2Output = $ | |
60 | - | let debugLayer2 = $ | |
64 | + | let $t020392137 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
65 | + | let layer1Output = $t020392137._1 | |
66 | + | let debugLayer1 = $t020392137._2 | |
67 | + | let $t021422246 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
68 | + | let layer2Output = $t021422246._1 | |
69 | + | let debugLayer2 = $t021422246._2 | |
61 | 70 | (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2) | |
62 | 71 | } | |
63 | 72 | ||
64 | 73 |
github/deemru/w8io/169f3d6 37.17 ms ◑![]()