tx · GrYgFiPFtYBHK5z9HdzqdS27NYqqNRNR7QHf3AxwJu1z

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.04.16 23:30 [3065796] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "GrYgFiPFtYBHK5z9HdzqdS27NYqqNRNR7QHf3AxwJu1z", "fee": 1000000, "feeAssetId": null, "timestamp": 1713299337067, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "4xgM47Ng9cNwazp4NCtZTZthXRuUDF6s7eVwR11imeCnbo3QDCMR89CrbGbWNiC18yhZUYB8SgnCA4kFxjsF7x4H" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAcAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmwCQAETAAAAAIAAAAAAAAJKpwFAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLAUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwWCQAETAAAAAIA///////2TQsFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcYJAARMAAAAAgD///////JPigUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8GBQAAAANuaWwBAAAAB3NpZ21vaWQAAAACAAAAAXoAAAALZGVidWdQcmVmaXgEAAAAAWUAAAAAAAApekkEAAAABGJhc2UAAAAAAAAPQkAEAAAACXBvc2l0aXZlWgMJAABmAAAAAgAAAAAAAAAAAAUAAAABegkBAAAAAS0AAAABBQAAAAF6BQAAAAF6BAAAAAdleHBQYXJ0CQAAawAAAAMFAAAAAWUFAAAABGJhc2UFAAAACXBvc2l0aXZlWgQAAAAIc2lnVmFsdWUJAABrAAAAAwUAAAAEYmFzZQkAAGQAAAACBQAAAARiYXNlBQAAAAdleHBQYXJ0BQAAAARiYXNlCQAFFAAAAAIJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACXBvc2l0aXZlWgUAAAAJcG9zaXRpdmVaCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAdleHBQYXJ0BQAAAAdleHBQYXJ0CQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAhzaWdWYWx1ZQUAAAAIc2lnVmFsdWUFAAAAA25pbAUAAAAIc2lnVmFsdWUBAAAAEWZvcndhcmRQYXNzTGF5ZXIxAAAABAAAAAVpbnB1dAAAAAd3ZWlnaHRzAAAABmJpYXNlcwAAAAtkZWJ1Z1ByZWZpeAQAAAAEc3VtMAkAAGQAAAACCQAAZAAAAAIJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPQkAJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAPQkAJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAABAAAAARzdW0xCQAAZAAAAAIJAABkAAAAAgkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQAAAAAAAAAAAQAAAAAAAA9CQAkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAEEAAAACyR0MDEwNjcxMTEzCQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTACAAAACExheWVyMU4wBAAAAAZkZWJ1ZzAIBQAAAAskdDAxMDY3MTExMwAAAAJfMQQAAAAEc2lnMAgFAAAACyR0MDEwNjcxMTEzAAAAAl8yBAAAAAskdDAxMTE4MTE2NAkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0xAgAAAAhMYXllcjFOMQQAAAAGZGVidWcxCAUAAAALJHQwMTExODExNjQAAAACXzEEAAAABHNpZzEIBQAAAAskdDAxMTE4MTE2NAAAAAJfMgkABRQAAAACCQAETAAAAAIFAAAABHNpZzAJAARMAAAAAgUAAAAEc2lnMQUAAAADbmlsCQAETgAAAAIFAAAABmRlYnVnMAUAAAAGZGVidWcxAQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQAAAAFaW5wdXQAAAAHd2VpZ2h0cwAAAAZiaWFzZXMAAAALZGVidWdQcmVmaXgEAAAABHN1bTAJAABkAAAAAgkAAGQAAAACCQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0JACQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAD0JACQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAAQAAAALJHQwMTQzMzE0NzkJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMAIAAAAITGF5ZXIyTjAEAAAABmRlYnVnMAgFAAAACyR0MDE0MzMxNDc5AAAAAl8xBAAAAARzaWcwCAUAAAALJHQwMTQzMzE0NzkAAAACXzIJAAUUAAAAAgUAAAAEc2lnMAUAAAAGZGVidWcwAAAAAQAAAAFpAQAAAAdwcmVkaWN0AAAAAgAAAAZpbnB1dDEAAAAGaW5wdXQyBAAAAAxzY2FsZWRJbnB1dDEDCQAAAAAAAAIFAAAABmlucHV0MQAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAAMc2NhbGVkSW5wdXQyAwkAAAAAAAACBQAAAAZpbnB1dDIAAAAAAAAAAAEAAAAAAAAPQkAAAAAAAAAAAAAEAAAABmlucHV0cwkABEwAAAACBQAAAAxzY2FsZWRJbnB1dDEJAARMAAAAAgUAAAAMc2NhbGVkSW5wdXQyBQAAAANuaWwEAAAACyR0MDE3MzAxODI4CQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEBQAAAAZpbnB1dHMFAAAADWxheWVyMVdlaWdodHMFAAAADGxheWVyMUJpYXNlcwIAAAAGTGF5ZXIxBAAAAAxsYXllcjFPdXRwdXQIBQAAAAskdDAxNzMwMTgyOAAAAAJfMQQAAAALZGVidWdMYXllcjEIBQAAAAskdDAxNzMwMTgyOAAAAAJfMgQAAAALJHQwMTgzMzE5MzcJAQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQFAAAADGxheWVyMU91dHB1dAUAAAANbGF5ZXIyV2VpZ2h0cwUAAAAMbGF5ZXIyQmlhc2VzAgAAAAZMYXllcjIEAAAADGxheWVyMk91dHB1dAgFAAAACyR0MDE4MzMxOTM3AAAAAl8xBAAAAAtkZWJ1Z0xheWVyMggFAAAACyR0MDE4MzMxOTM3AAAAAl8yCQAETgAAAAIJAAROAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAAGcmVzdWx0BQAAAAxsYXllcjJPdXRwdXQFAAAAA25pbAUAAAALZGVidWdMYXllcjEFAAAAC2RlYnVnTGF5ZXIyAAAAAA2bcSU=", "height": 3065796, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: M1cUmR4buw3m1ApiJjeGXmKDuNfXDeYV5g723kcmemh Next: 63HL2ET9udUcXr31RyWXVSbexg4dmVv2RJVheQd1HjGm Diff:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
4-let layer1Weights = [[600496, 600732], [414196, 414252]]
4+let layer1Weights = [[600496, 600732], [414197, 414252]]
55
66 let layer1Biases = [-259050, -635637]
77
8-let layer2Weights = [[832965, -897141]]
8+let layer2Weights = [[832966, -897142]]
99
1010 let layer2Biases = [-381178]
1111
1616 then -(z)
1717 else z
1818 let expPart = fraction(e, base, positiveZ)
19- let sigValue = fraction(base, base, (base + expPart))
19+ let sigValue = fraction(base, (base + expPart), base)
2020 $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expPart"), expPart), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
2121 }
2222
2424 func forwardPassLayer1 (input,weights,biases,debugPrefix) = {
2525 let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
2626 let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1])
27- let $t011721218 = sigmoid(sum0, "Layer1N0")
28- let debug0 = $t011721218._1
29- let sig0 = $t011721218._2
30- let $t012231269 = sigmoid(sum1, "Layer1N1")
31- let debug1 = $t012231269._1
32- let sig1 = $t012231269._2
27+ let $t010671113 = sigmoid(sum0, "Layer1N0")
28+ let debug0 = $t010671113._1
29+ let sig0 = $t010671113._2
30+ let $t011181164 = sigmoid(sum1, "Layer1N1")
31+ let debug1 = $t011181164._1
32+ let sig1 = $t011181164._2
3333 $Tuple2([sig0, sig1], (debug0 ++ debug1))
3434 }
3535
3636
3737 func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
3838 let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
39- let $t015381584 = sigmoid(sum0, "Layer2N0")
40- let debug0 = $t015381584._1
41- let sig0 = $t015381584._2
42- $Tuple2([sig0], debug0)
39+ let $t014331479 = sigmoid(sum0, "Layer2N0")
40+ let debug0 = $t014331479._1
41+ let sig0 = $t014331479._2
42+ $Tuple2(sig0, debug0)
4343 }
4444
4545
5252 then 1000000
5353 else 0
5454 let inputs = [scaledInput1, scaledInput2]
55- let $t018371935 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
56- let layer1Output = $t018371935._1
57- let debugLayer1 = $t018371935._2
58- let $t019402044 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
59- let layer2Output = $t019402044._1
60- let debugLayer2 = $t019402044._2
61- (([IntegerEntry("result", layer2Output[0])] ++ debugLayer1) ++ debugLayer2)
55+ let $t017301828 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
56+ let layer1Output = $t017301828._1
57+ let debugLayer1 = $t017301828._2
58+ let $t018331937 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
59+ let layer2Output = $t018331937._1
60+ let debugLayer2 = $t018331937._2
61+ (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2)
6262 }
6363
6464
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
4-let layer1Weights = [[600496, 600732], [414196, 414252]]
4+let layer1Weights = [[600496, 600732], [414197, 414252]]
55
66 let layer1Biases = [-259050, -635637]
77
8-let layer2Weights = [[832965, -897141]]
8+let layer2Weights = [[832966, -897142]]
99
1010 let layer2Biases = [-381178]
1111
1212 func sigmoid (z,debugPrefix) = {
1313 let e = 2718281
1414 let base = 1000000
1515 let positiveZ = if ((0 > z))
1616 then -(z)
1717 else z
1818 let expPart = fraction(e, base, positiveZ)
19- let sigValue = fraction(base, base, (base + expPart))
19+ let sigValue = fraction(base, (base + expPart), base)
2020 $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expPart"), expPart), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
2121 }
2222
2323
2424 func forwardPassLayer1 (input,weights,biases,debugPrefix) = {
2525 let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
2626 let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1])
27- let $t011721218 = sigmoid(sum0, "Layer1N0")
28- let debug0 = $t011721218._1
29- let sig0 = $t011721218._2
30- let $t012231269 = sigmoid(sum1, "Layer1N1")
31- let debug1 = $t012231269._1
32- let sig1 = $t012231269._2
27+ let $t010671113 = sigmoid(sum0, "Layer1N0")
28+ let debug0 = $t010671113._1
29+ let sig0 = $t010671113._2
30+ let $t011181164 = sigmoid(sum1, "Layer1N1")
31+ let debug1 = $t011181164._1
32+ let sig1 = $t011181164._2
3333 $Tuple2([sig0, sig1], (debug0 ++ debug1))
3434 }
3535
3636
3737 func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
3838 let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
39- let $t015381584 = sigmoid(sum0, "Layer2N0")
40- let debug0 = $t015381584._1
41- let sig0 = $t015381584._2
42- $Tuple2([sig0], debug0)
39+ let $t014331479 = sigmoid(sum0, "Layer2N0")
40+ let debug0 = $t014331479._1
41+ let sig0 = $t014331479._2
42+ $Tuple2(sig0, debug0)
4343 }
4444
4545
4646 @Callable(i)
4747 func predict (input1,input2) = {
4848 let scaledInput1 = if ((input1 == 1))
4949 then 1000000
5050 else 0
5151 let scaledInput2 = if ((input2 == 1))
5252 then 1000000
5353 else 0
5454 let inputs = [scaledInput1, scaledInput2]
55- let $t018371935 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
56- let layer1Output = $t018371935._1
57- let debugLayer1 = $t018371935._2
58- let $t019402044 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
59- let layer2Output = $t019402044._1
60- let debugLayer2 = $t019402044._2
61- (([IntegerEntry("result", layer2Output[0])] ++ debugLayer1) ++ debugLayer2)
55+ let $t017301828 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
56+ let layer1Output = $t017301828._1
57+ let debugLayer1 = $t017301828._2
58+ let $t018331937 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
59+ let layer2Output = $t018331937._1
60+ let debugLayer2 = $t018331937._2
61+ (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2)
6262 }
6363
6464

github/deemru/w8io/169f3d6 
31.03 ms