tx · Cz1bL3xdP7eKdZwGURLxJR4c2Z5n6VT2qikSTCDKNthw

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.05.28 00:54 [3124967] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "Cz1bL3xdP7eKdZwGURLxJR4c2Z5n6VT2qikSTCDKNthw", "fee": 1000000, "feeAssetId": null, "timestamp": 1716846869831, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "52m3iDKP26HgovQiVdiAi4ewfyfgbbSDx7kgrmaXciWzvSccHLazE5CwzG2BR6nFMhjXXAcBKuxzfGQ5JtnV9TeQ" ], "script": "base64:BwIICAISBAoCAQEJAA93ZWlnaHRzX2xheWVyXzEJAMwIAgkAzAgCAJHVAwkAzAgCAKnVAwUDbmlsCQDMCAIJAMwIAgDLwwIJAMwIAgDRwwIFA25pbAUDbmlsAA5iaWFzZXNfbGF5ZXJfMQkAzAgCAM+1/v///////wEJAMwIAgC1j/z///////8BBQNuaWwAD3dlaWdodHNfbGF5ZXJfMgkAzAgCCQDMCAIA4IoFCQDMCAIAjsP6////////AQUDbmlsBQNuaWwADmJpYXNlc19sYXllcl8yCQDMCAIAm9b9////////AQUDbmlsARBsaW5lYXJfZm9yd2FyZF8xAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAAAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAEAkE4JAJEDAgUGYmlhc2VzAAAEDXdlaWdodGVkX3N1bTIJAGQCCQBpAgkAZAIJAGgCCQCRAwIFBWlucHV0AAAJAJEDAgkAkQMCBQd3ZWlnaHRzAAEAAAkAaAIJAJEDAgUFaW5wdXQAAQkAkQMCCQCRAwIFB3dlaWdodHMAAQABAJBOCQCRAwIFBmJpYXNlcwABCQDMCAIFDXdlaWdodGVkX3N1bTEJAMwIAgUNd2VpZ2h0ZWRfc3VtMgUDbmlsARBsaW5lYXJfZm9yd2FyZF8yAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAAAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAEAkE4JAJEDAgUGYmlhc2VzAAAJAMwIAgUNd2VpZ2h0ZWRfc3VtMQUDbmlsAQdzaWdtb2lkAQVpbnB1dAMJAGYCAPCx/////////wEFBWlucHV0AAADCQBmAgUFaW5wdXQAkE4AkE4JAGQCAIgnCQBpAgUFaW5wdXQAAgEUc2lnbW9pZF9hY3RpdmF0aW9uXzEBBmlucHV0cwkAzAgCCQEHc2lnbW9pZAEJAJEDAgUGaW5wdXRzAAAJAMwIAgkBB3NpZ21vaWQBCQCRAwIFBmlucHV0cwABBQNuaWwBFHNpZ21vaWRfYWN0aXZhdGlvbl8yAQZpbnB1dHMJAMwIAgkBB3NpZ21vaWQBCQCRAwIFBmlucHV0cwAABQNuaWwBAWkBB3ByZWRpY3QCAngxAngyBAl4MV9zY2FsZWQJAGgCBQJ4MQCQTgQJeDJfc2NhbGVkCQBoAgUCeDIAkE4EBmlucHV0cwkAzAgCBQl4MV9zY2FsZWQJAMwIAgUJeDJfc2NhbGVkBQNuaWwEAnoxCQEQbGluZWFyX2ZvcndhcmRfMQMFBmlucHV0cwUPd2VpZ2h0c19sYXllcl8xBQ5iaWFzZXNfbGF5ZXJfMQQCYTEJARRzaWdtb2lkX2FjdGl2YXRpb25fMQEFAnoxBAJ6MgkBEGxpbmVhcl9mb3J3YXJkXzIDBQJhMQUPd2VpZ2h0c19sYXllcl8yBQ5iaWFzZXNfbGF5ZXJfMgQCYTIJARRzaWdtb2lkX2FjdGl2YXRpb25fMgEFAnoyBAdyZXN1bHRzCQDMCAIJAJEDAgUCYTIAAAUDbmlsBA5yZXN1bHRfZW50cmllcwkAzAgCCQEMSW50ZWdlckVudHJ5AgIGcmVzdWx0CQCRAwIFB3Jlc3VsdHMAAAUDbmlsBA1kZWJ1Z19vdXRwdXRzBQNuaWwJAJQKAgUNZGVidWdfb3V0cHV0cwUOcmVzdWx0X2VudHJpZXMAL/povw==", "height": 3124967, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: FUqhqF9AWPAyMck9vfpp3RJunmYtHj7gP65drM8M9LGm Next: 62JzRAm5QWVYBQSVpA6zUc8SWBcZ9vo8XoCvqrnmQK9 Diff:
OldNewDifferences
2929 else (5000 + (input / 2))
3030
3131
32-func sigmoid_activation (inputs,num_outputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])]
32+func sigmoid_activation_1 (inputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])]
33+
34+
35+func sigmoid_activation_2 (inputs) = [sigmoid(inputs[0])]
3336
3437
3538 @Callable(i)
3841 let x2_scaled = (x2 * 10000)
3942 let inputs = [x1_scaled, x2_scaled]
4043 let z1 = linear_forward_1(inputs, weights_layer_1, biases_layer_1)
41- let a1 = sigmoid_activation(z1, 2)
44+ let a1 = sigmoid_activation_1(z1)
4245 let z2 = linear_forward_2(a1, weights_layer_2, biases_layer_2)
43- let a2 = sigmoid_activation(z2, 1)
46+ let a2 = sigmoid_activation_2(z2)
4447 let results = [a2[0]]
4548 let result_entries = [IntegerEntry("result", results[0])]
4649 let debug_outputs = nil
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 7 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
44 let weights_layer_1 = [[60049, 60073], [41419, 41425]]
55
66 let biases_layer_1 = [-25905, -63563]
77
88 let weights_layer_2 = [[83296, -89714]]
99
1010 let biases_layer_2 = [-38117]
1111
1212 func linear_forward_1 (input,weights,biases) = {
1313 let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0])
1414 let weighted_sum2 = ((((input[0] * weights[1][0]) + (input[1] * weights[1][1])) / 10000) + biases[1])
1515 [weighted_sum1, weighted_sum2]
1616 }
1717
1818
1919 func linear_forward_2 (input,weights,biases) = {
2020 let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0])
2121 [weighted_sum1]
2222 }
2323
2424
2525 func sigmoid (input) = if ((-10000 > input))
2626 then 0
2727 else if ((input > 10000))
2828 then 10000
2929 else (5000 + (input / 2))
3030
3131
32-func sigmoid_activation (inputs,num_outputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])]
32+func sigmoid_activation_1 (inputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])]
33+
34+
35+func sigmoid_activation_2 (inputs) = [sigmoid(inputs[0])]
3336
3437
3538 @Callable(i)
3639 func predict (x1,x2) = {
3740 let x1_scaled = (x1 * 10000)
3841 let x2_scaled = (x2 * 10000)
3942 let inputs = [x1_scaled, x2_scaled]
4043 let z1 = linear_forward_1(inputs, weights_layer_1, biases_layer_1)
41- let a1 = sigmoid_activation(z1, 2)
44+ let a1 = sigmoid_activation_1(z1)
4245 let z2 = linear_forward_2(a1, weights_layer_2, biases_layer_2)
43- let a2 = sigmoid_activation(z2, 1)
46+ let a2 = sigmoid_activation_2(z2)
4447 let results = [a2[0]]
4548 let result_entries = [IntegerEntry("result", results[0])]
4649 let debug_outputs = nil
4750 $Tuple2(debug_outputs, result_entries)
4851 }
4952
5053

github/deemru/w8io/169f3d6 
26.11 ms