tx · BQxK6Q9RxFkuvKPme7hUqZ728mZQD9T4F4MFJRiKaPvb 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY: -0.01000000 Waves 2024.04.28 13:49 [3082618] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves
{ "type": 13, "id": "BQxK6Q9RxFkuvKPme7hUqZ728mZQD9T4F4MFJRiKaPvb", "fee": 1000000, "feeAssetId": null, "timestamp": 1714301410024, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "FgWK3zuzQ4YT5ZMvpRZhqRQx4BUT6YS4o32eUH1eBXzTGrh5pCPiRYnsuL4sPicGaYkvqc2advPkQCuyPpFJDsV" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAkAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmwCQAETAAAAAIAAAAAAAAJKpwFAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfQJAARMAAAAAgAAAAAAAAZSLAUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwVCQAETAAAAAIA///////2TQsFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcUJAARMAAAAAgD///////JPiwUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAABmNsYW1wWgAAAAIAAAABegAAAAVsaW1pdAMJAABmAAAAAgUAAAABegUAAAAFbGltaXQFAAAABWxpbWl0AwkAAGYAAAACCQEAAAABLQAAAAEFAAAABWxpbWl0BQAAAAF6CQEAAAABLQAAAAEFAAAABWxpbWl0BQAAAAF6AQAAAApleHBfYXBwcm94AAAAAQAAAAF4BAAAAAhzY2FsZWRfeAkAAGkAAAACBQAAAAF4AAAAAAAAACcQBAAAAAlzY2FsZWRfeDIJAQAAAAhmcmFjdGlvbgAAAAQFAAAACHNjYWxlZF94BQAAAAhzY2FsZWRfeAAAAAAAAAAAAQUAAAAERE9XTgQAAAAJc2NhbGVkX3gzCQEAAAAIZnJhY3Rpb24AAAAEBQAAAAlzY2FsZWRfeDIFAAAACHNjYWxlZF94AAAAAAAAAAABBQAAAARET1dOBAAAAApleHBfcmVzdWx0CQAAZQAAAAIJAABkAAAAAgkAAGUAAAACAAAAAAAAACcQCQEAAAAIZnJhY3Rpb24AAAAEBQAAAAhzY2FsZWRfeAAAAAAAAAAACgAAAAAAAAAAAQUAAAAERE9XTgkBAAAACGZyYWN0aW9uAAAABAUAAAAJc2NhbGVkX3gyAAAAAAAAAADIAAAAAAAAAAABBQAAAARET1dOCQEAAAAIZnJhY3Rpb24AAAAEBQAAAAlzY2FsZWRfeDMAAAAAAAAAF3AAAAAAAAAAAAEFAAAABERPV04DCQAAZgAAAAIAAAAAAAAAAAAFAAAAAXgJAABkAAAAAgAAAAAAAAAnEAUAAAAKZXhwX3Jlc3VsdAkAAGUAAAACAAAAAAAAACcQBQAAAApleHBfcmVzdWx0AQAAAAdzaWdtb2lkAAAAAgAAAAF6AAAAC2RlYnVnUHJlZml4BAAAAAhjbGFtcGVkWgkBAAAABmNsYW1wWgAAAAIFAAAAAXoAAAAAAAABhqAEAAAACXBvc2l0aXZlWgMJAABmAAAAAgAAAAAAAAAAAAUAAAABegkBAAAAAS0AAAABBQAAAAF6BQAAAAF6BAAAAAhleHBWYWx1ZQkBAAAACmV4cF9hcHByb3gAAAABCQEAAAABLQAAAAEFAAAACXBvc2l0aXZlWgQAAAAIc2lnVmFsdWUJAQAAAAhmcmFjdGlvbgAAAAQAAAAAAAAAJxAJAABkAAAAAgAAAAAAAAAnEAUAAAAIZXhwVmFsdWUAAAAAAAAAAAEFAAAABERPV04JAAUUAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgkAASwAAAACBQAAAAtkZWJ1Z1ByZWZpeAIAAAAGaW5wdXRaBQAAAAF6CQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAhjbGFtcGVkWgUAAAAIY2xhbXBlZFoJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACXBvc2l0aXZlWgUAAAAJcG9zaXRpdmVaCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAhleHBWYWx1ZQUAAAAIZXhwVmFsdWUJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACHNpZ1ZhbHVlBQAAAAhzaWdWYWx1ZQUAAAADbmlsBQAAAAhzaWdWYWx1ZQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEAAAABWlucHV0AAAAB3dlaWdodHMAAAAGYmlhc2VzAAAAC2RlYnVnUHJlZml4BAAAAARzdW0wCQAAZAAAAAIJAABkAAAAAgkAAGgAAAACCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAAkAAGgAAAACCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAQkAAGgAAAACCQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAAAAAAAAAAGGoAQAAAAEc3VtMQkAAGQAAAACCQAAZAAAAAIJAABoAAAAAgkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAEAAAAAAAAAAAAJAABoAAAAAgkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAEAAAAAAAAAAAEJAABoAAAAAgkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAEAAAAAAAABhqAEAAAACyR0MDIwNTUyMTA4CQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTACAAAACExheWVyMU4wBAAAAA1kZWJ1Z0VudHJpZXMwCAUAAAALJHQwMjA1NTIxMDgAAAACXzEEAAAABHNpZzAIBQAAAAskdDAyMDU1MjEwOAAAAAJfMgQAAAALJHQwMjExMzIxNjYJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMQIAAAAITGF5ZXIxTjEEAAAADWRlYnVnRW50cmllczEIBQAAAAskdDAyMTEzMjE2NgAAAAJfMQQAAAAEc2lnMQgFAAAACyR0MDIxMTMyMTY2AAAAAl8yBAAAAAlkZWJ1Z0luZm8JAAROAAAAAgUAAAANZGVidWdFbnRyaWVzMAUAAAANZGVidWdFbnRyaWVzMQQAAAAGb3V0cHV0CQAETAAAAAIFAAAABHNpZzAJAARMAAAAAgUAAAAEc2lnMQUAAAADbmlsCQAFFAAAAAIFAAAACWRlYnVnSW5mbwUAAAAGb3V0cHV0AQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQAAAAFaW5wdXQAAAAHd2VpZ2h0cwAAAAZiaWFzZXMAAAALZGVidWdQcmVmaXgEAAAABHN1bTAJAABkAAAAAgkAAGQAAAACCQAAaAAAAAIJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAAACQAAaAAAAAIJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAABCQAAaAAAAAIJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAAAAAAAAAAAYagBAAAAAskdDAyNDc2MjUyOQkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0wAgAAAAhMYXllcjJOMAQAAAANZGVidWdFbnRyaWVzMAgFAAAACyR0MDI0NzYyNTI5AAAAAl8xBAAAAARzaWcwCAUAAAALJHQwMjQ3NjI1MjkAAAACXzIEAAAACWRlYnVnSW5mbwUAAAANZGVidWdFbnRyaWVzMAQAAAAGb3V0cHV0BQAAAARzaWcwCQAFFAAAAAIFAAAACWRlYnVnSW5mbwUAAAAGb3V0cHV0AAAAAQAAAAFpAQAAAAdwcmVkaWN0AAAAAgAAAAZpbnB1dDEAAAAGaW5wdXQyBAAAAAxzY2FsZWRJbnB1dDEDCQAAAAAAAAIFAAAABmlucHV0MQAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAAMc2NhbGVkSW5wdXQyAwkAAAAAAAACBQAAAAZpbnB1dDIAAAAAAAAAAAEAAAAAAAAPQkAAAAAAAAAAAAAEAAAABmlucHV0cwkABEwAAAACBQAAAAxzY2FsZWRJbnB1dDEJAARMAAAAAgUAAAAMc2NhbGVkSW5wdXQyBQAAAANuaWwEAAAACyR0MDI4NDEyOTM5CQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEBQAAAAZpbnB1dHMFAAAADWxheWVyMVdlaWdodHMFAAAADGxheWVyMUJpYXNlcwIAAAAGTGF5ZXIxBAAAAAtkZWJ1Z0xheWVyMQgFAAAACyR0MDI4NDEyOTM5AAAAAl8xBAAAAAxsYXllcjFPdXRwdXQIBQAAAAskdDAyODQxMjkzOQAAAAJfMgQAAAALJHQwMjk0NDMwNDgJAQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQFAAAADGxheWVyMU91dHB1dAUAAAANbGF5ZXIyV2VpZ2h0cwUAAAAMbGF5ZXIyQmlhc2VzAgAAAAZMYXllcjIEAAAAC2RlYnVnTGF5ZXIyCAUAAAALJHQwMjk0NDMwNDgAAAACXzEEAAAADGxheWVyMk91dHB1dAgFAAAACyR0MDI5NDQzMDQ4AAAAAl8yCQAETgAAAAIJAAROAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAAGcmVzdWx0BQAAAAxsYXllcjJPdXRwdXQFAAAAA25pbAUAAAALZGVidWdMYXllcjEFAAAAC2RlYnVnTGF5ZXIyAAAAABYAWfQ=", "height": 3082618, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: EUk6SP8KWsjHF1LQH8TKBsex2FAUFa7uDWqcmJfKSMsf Next: 5K3SesFjoRF1HkRqSncDmVU95ew5cKw5DxSrJdSM3sXu Diff:
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let layer1Weights = [[ | |
4 | + | let layer1Weights = [[600496, 600732], [414196, 414252]] | |
5 | 5 | ||
6 | - | let layer1Biases = [- | |
6 | + | let layer1Biases = [-259051, -635637] | |
7 | 7 | ||
8 | - | let layer2Weights = [[ | |
8 | + | let layer2Weights = [[832965, -897141]] | |
9 | 9 | ||
10 | 10 | let layer2Biases = [-381179] | |
11 | 11 | ||
18 | 18 | ||
19 | 19 | func exp_approx (x) = { | |
20 | 20 | let scaled_x = (x / 10000) | |
21 | - | let scaled_x2 = fraction(scaled_x, scaled_x, 1) | |
22 | - | let scaled_x3 = fraction(scaled_x2, scaled_x, 1) | |
23 | - | let exp_result = ((( | |
21 | + | let scaled_x2 = fraction(scaled_x, scaled_x, 1, DOWN) | |
22 | + | let scaled_x3 = fraction(scaled_x2, scaled_x, 1, DOWN) | |
23 | + | let exp_result = (((10000 - fraction(scaled_x, 10, 1, DOWN)) + fraction(scaled_x2, 200, 1, DOWN)) - fraction(scaled_x3, 6000, 1, DOWN)) | |
24 | 24 | if ((0 > x)) | |
25 | - | then ( | |
26 | - | else ( | |
25 | + | then (10000 + exp_result) | |
26 | + | else (10000 - exp_result) | |
27 | 27 | } | |
28 | 28 | ||
29 | 29 | ||
33 | 33 | then -(z) | |
34 | 34 | else z | |
35 | 35 | let expValue = exp_approx(-(positiveZ)) | |
36 | - | let sigValue = fraction( | |
36 | + | let sigValue = fraction(10000, (10000 + expValue), 1, DOWN) | |
37 | 37 | $Tuple2([IntegerEntry((debugPrefix + "inputZ"), z), IntegerEntry((debugPrefix + "clampedZ"), clampedZ), IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
38 | 38 | } | |
39 | 39 | ||
41 | 41 | func forwardPassLayer1 (input,weights,biases,debugPrefix) = { | |
42 | 42 | let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000)) | |
43 | 43 | let sum1 = (((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (biases[1] * 100000)) | |
44 | - | let $ | |
45 | - | let debugEntries0 = $ | |
46 | - | let sig0 = $ | |
47 | - | let $ | |
48 | - | let debugEntries1 = $ | |
49 | - | let sig1 = $ | |
44 | + | let $t020552108 = sigmoid(sum0, "Layer1N0") | |
45 | + | let debugEntries0 = $t020552108._1 | |
46 | + | let sig0 = $t020552108._2 | |
47 | + | let $t021132166 = sigmoid(sum1, "Layer1N1") | |
48 | + | let debugEntries1 = $t021132166._1 | |
49 | + | let sig1 = $t021132166._2 | |
50 | 50 | let debugInfo = (debugEntries0 ++ debugEntries1) | |
51 | 51 | let output = [sig0, sig1] | |
52 | 52 | $Tuple2(debugInfo, output) | |
55 | 55 | ||
56 | 56 | func forwardPassLayer2 (input,weights,biases,debugPrefix) = { | |
57 | 57 | let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000)) | |
58 | - | let $ | |
59 | - | let debugEntries0 = $ | |
60 | - | let sig0 = $ | |
58 | + | let $t024762529 = sigmoid(sum0, "Layer2N0") | |
59 | + | let debugEntries0 = $t024762529._1 | |
60 | + | let sig0 = $t024762529._2 | |
61 | 61 | let debugInfo = debugEntries0 | |
62 | 62 | let output = sig0 | |
63 | 63 | $Tuple2(debugInfo, output) | |
73 | 73 | then 1000000 | |
74 | 74 | else 0 | |
75 | 75 | let inputs = [scaledInput1, scaledInput2] | |
76 | - | let $ | |
77 | - | let debugLayer1 = $ | |
78 | - | let layer1Output = $ | |
79 | - | let $ | |
80 | - | let debugLayer2 = $ | |
81 | - | let layer2Output = $ | |
76 | + | let $t028412939 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
77 | + | let debugLayer1 = $t028412939._1 | |
78 | + | let layer1Output = $t028412939._2 | |
79 | + | let $t029443048 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
80 | + | let debugLayer2 = $t029443048._1 | |
81 | + | let layer2Output = $t029443048._2 | |
82 | 82 | (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2) | |
83 | 83 | } | |
84 | 84 |
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let layer1Weights = [[ | |
4 | + | let layer1Weights = [[600496, 600732], [414196, 414252]] | |
5 | 5 | ||
6 | - | let layer1Biases = [- | |
6 | + | let layer1Biases = [-259051, -635637] | |
7 | 7 | ||
8 | - | let layer2Weights = [[ | |
8 | + | let layer2Weights = [[832965, -897141]] | |
9 | 9 | ||
10 | 10 | let layer2Biases = [-381179] | |
11 | 11 | ||
12 | 12 | func clampZ (z,limit) = if ((z > limit)) | |
13 | 13 | then limit | |
14 | 14 | else if ((-(limit) > z)) | |
15 | 15 | then -(limit) | |
16 | 16 | else z | |
17 | 17 | ||
18 | 18 | ||
19 | 19 | func exp_approx (x) = { | |
20 | 20 | let scaled_x = (x / 10000) | |
21 | - | let scaled_x2 = fraction(scaled_x, scaled_x, 1) | |
22 | - | let scaled_x3 = fraction(scaled_x2, scaled_x, 1) | |
23 | - | let exp_result = ((( | |
21 | + | let scaled_x2 = fraction(scaled_x, scaled_x, 1, DOWN) | |
22 | + | let scaled_x3 = fraction(scaled_x2, scaled_x, 1, DOWN) | |
23 | + | let exp_result = (((10000 - fraction(scaled_x, 10, 1, DOWN)) + fraction(scaled_x2, 200, 1, DOWN)) - fraction(scaled_x3, 6000, 1, DOWN)) | |
24 | 24 | if ((0 > x)) | |
25 | - | then ( | |
26 | - | else ( | |
25 | + | then (10000 + exp_result) | |
26 | + | else (10000 - exp_result) | |
27 | 27 | } | |
28 | 28 | ||
29 | 29 | ||
30 | 30 | func sigmoid (z,debugPrefix) = { | |
31 | 31 | let clampedZ = clampZ(z, 100000) | |
32 | 32 | let positiveZ = if ((0 > z)) | |
33 | 33 | then -(z) | |
34 | 34 | else z | |
35 | 35 | let expValue = exp_approx(-(positiveZ)) | |
36 | - | let sigValue = fraction( | |
36 | + | let sigValue = fraction(10000, (10000 + expValue), 1, DOWN) | |
37 | 37 | $Tuple2([IntegerEntry((debugPrefix + "inputZ"), z), IntegerEntry((debugPrefix + "clampedZ"), clampedZ), IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
38 | 38 | } | |
39 | 39 | ||
40 | 40 | ||
41 | 41 | func forwardPassLayer1 (input,weights,biases,debugPrefix) = { | |
42 | 42 | let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000)) | |
43 | 43 | let sum1 = (((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (biases[1] * 100000)) | |
44 | - | let $ | |
45 | - | let debugEntries0 = $ | |
46 | - | let sig0 = $ | |
47 | - | let $ | |
48 | - | let debugEntries1 = $ | |
49 | - | let sig1 = $ | |
44 | + | let $t020552108 = sigmoid(sum0, "Layer1N0") | |
45 | + | let debugEntries0 = $t020552108._1 | |
46 | + | let sig0 = $t020552108._2 | |
47 | + | let $t021132166 = sigmoid(sum1, "Layer1N1") | |
48 | + | let debugEntries1 = $t021132166._1 | |
49 | + | let sig1 = $t021132166._2 | |
50 | 50 | let debugInfo = (debugEntries0 ++ debugEntries1) | |
51 | 51 | let output = [sig0, sig1] | |
52 | 52 | $Tuple2(debugInfo, output) | |
53 | 53 | } | |
54 | 54 | ||
55 | 55 | ||
56 | 56 | func forwardPassLayer2 (input,weights,biases,debugPrefix) = { | |
57 | 57 | let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000)) | |
58 | - | let $ | |
59 | - | let debugEntries0 = $ | |
60 | - | let sig0 = $ | |
58 | + | let $t024762529 = sigmoid(sum0, "Layer2N0") | |
59 | + | let debugEntries0 = $t024762529._1 | |
60 | + | let sig0 = $t024762529._2 | |
61 | 61 | let debugInfo = debugEntries0 | |
62 | 62 | let output = sig0 | |
63 | 63 | $Tuple2(debugInfo, output) | |
64 | 64 | } | |
65 | 65 | ||
66 | 66 | ||
67 | 67 | @Callable(i) | |
68 | 68 | func predict (input1,input2) = { | |
69 | 69 | let scaledInput1 = if ((input1 == 1)) | |
70 | 70 | then 1000000 | |
71 | 71 | else 0 | |
72 | 72 | let scaledInput2 = if ((input2 == 1)) | |
73 | 73 | then 1000000 | |
74 | 74 | else 0 | |
75 | 75 | let inputs = [scaledInput1, scaledInput2] | |
76 | - | let $ | |
77 | - | let debugLayer1 = $ | |
78 | - | let layer1Output = $ | |
79 | - | let $ | |
80 | - | let debugLayer2 = $ | |
81 | - | let layer2Output = $ | |
76 | + | let $t028412939 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
77 | + | let debugLayer1 = $t028412939._1 | |
78 | + | let layer1Output = $t028412939._2 | |
79 | + | let $t029443048 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
80 | + | let debugLayer2 = $t029443048._1 | |
81 | + | let layer2Output = $t029443048._2 | |
82 | 82 | (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2) | |
83 | 83 | } | |
84 | 84 | ||
85 | 85 |
github/deemru/w8io/169f3d6 43.57 ms ◑