tx · AwRrLAxF5aEBEdiTUheEyimrHT9gq5mRd1ki8zFuTWZw 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY: -0.01000000 Waves 2024.04.28 11:30 [3082469] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves
{ "type": 13, "id": "AwRrLAxF5aEBEdiTUheEyimrHT9gq5mRd1ki8zFuTWZw", "fee": 1000000, "feeAssetId": null, "timestamp": 1714293015946, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "TT3MU9AZKuxbWrB4YBVdaN9ZdEprtRfc2HrZDWesq5XpEkaoh1H46dQhNuT3pDhT2qsFWcsnLwRdng9DMb6mDBj" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAgAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmxCQAETAAAAAIAAAAAAAAJKpwFAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLQUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwVCQAETAAAAAIA///////2TQsFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcUJAARMAAAAAgD///////JPigUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAAEWV4cF9hcHByb3hpbWF0aW9uAAAAAQAAAAF4BAAAAAVzY2FsZQAAAAAAAAAnEAQAAAAIc2NhbGVkX3gJAABpAAAAAgUAAAABeAUAAAAFc2NhbGUEAAAAAWUAAAAAAAAAai8EAAAAB2ZhY3RvcjEFAAAACHNjYWxlZF94BAAAAAdmYWN0b3IyCQAAaQAAAAIJAABoAAAAAgUAAAAIc2NhbGVkX3gFAAAACHNjYWxlZF94CQAAaAAAAAIAAAAAAAAAAAIFAAAABXNjYWxlBAAAAAdmYWN0b3IzCQAAaQAAAAIJAABoAAAAAgkAAGgAAAACBQAAAAhzY2FsZWRfeAUAAAAIc2NhbGVkX3gFAAAACHNjYWxlZF94CQAAaAAAAAIJAABoAAAAAgAAAAAAAAAABgUAAAAFc2NhbGUFAAAABXNjYWxlCQAAZAAAAAIJAABkAAAAAgkAAGQAAAACAAAAAAAAACcQBQAAAAdmYWN0b3IxBQAAAAdmYWN0b3IyBQAAAAdmYWN0b3IzAQAAAAdzaWdtb2lkAAAAAgAAAAF6AAAAC2RlYnVnUHJlZml4BAAAAARiYXNlAAAAAAAAACcQBAAAAAlwb3NpdGl2ZVoDCQAAZgAAAAIAAAAAAAAAAAAFAAAAAXoJAQAAAAEtAAAAAQUAAAABegUAAAABegQAAAAIZXhwVmFsdWUJAQAAABFleHBfYXBwcm94aW1hdGlvbgAAAAEFAAAACXBvc2l0aXZlWgQAAAAIc2lnVmFsdWUJAABpAAAAAgkAAGgAAAACBQAAAARiYXNlAAAAAAAAACcQCQAAZAAAAAIFAAAABGJhc2UFAAAACGV4cFZhbHVlCQAFFAAAAAIJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACXBvc2l0aXZlWgUAAAAJcG9zaXRpdmVaCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAhleHBWYWx1ZQUAAAAIZXhwVmFsdWUJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACHNpZ1ZhbHVlBQAAAAhzaWdWYWx1ZQUAAAADbmlsBQAAAAhzaWdWYWx1ZQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEAAAABWlucHV0AAAAB3dlaWdodHMAAAAGYmlhc2VzAAAAC2RlYnVnUHJlZml4BAAAAARzdW0wCQAAZAAAAAIJAABkAAAAAgkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAA9CQAkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAAEAAAABHN1bTEJAABkAAAAAgkAAGQAAAACCQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAD0JACQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAABAAAAAAAAAAABAAAAAAAAD0JACQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAQQAAAALJHQwMTY3MjE3MTgJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMAIAAAAITGF5ZXIxTjAEAAAABmRlYnVnMAgFAAAACyR0MDE2NzIxNzE4AAAAAl8xBAAAAARzaWcwCAUAAAALJHQwMTY3MjE3MTgAAAACXzIEAAAACyR0MDE3MjMxNzY5CQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTECAAAACExheWVyMU4xBAAAAAZkZWJ1ZzEIBQAAAAskdDAxNzIzMTc2OQAAAAJfMQQAAAAEc2lnMQgFAAAACyR0MDE3MjMxNzY5AAAAAl8yCQAFFAAAAAIJAARMAAAAAgUAAAAEc2lnMAkABEwAAAACBQAAAARzaWcxBQAAAANuaWwJAAROAAAAAgUAAAAGZGVidWcwBQAAAAZkZWJ1ZzEBAAAAEWZvcndhcmRQYXNzTGF5ZXIyAAAABAAAAAVpbnB1dAAAAAd3ZWlnaHRzAAAABmJpYXNlcwAAAAtkZWJ1Z1ByZWZpeAQAAAAEc3VtMAkAAGQAAAACCQAAZAAAAAIJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPQkAJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAPQkAJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAABAAAAAskdDAyMDM4MjA4NAkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0wAgAAAAhMYXllcjJOMAQAAAAGZGVidWcwCAUAAAALJHQwMjAzODIwODQAAAACXzEEAAAABHNpZzAIBQAAAAskdDAyMDM4MjA4NAAAAAJfMgkABRQAAAACBQAAAARzaWcwBQAAAAZkZWJ1ZzAAAAABAAAAAWkBAAAAB3ByZWRpY3QAAAACAAAABmlucHV0MQAAAAZpbnB1dDIEAAAADHNjYWxlZElucHV0MQMJAAAAAAAAAgUAAAAGaW5wdXQxAAAAAAAAAAABAAAAAAAAD0JAAAAAAAAAAAAABAAAAAxzY2FsZWRJbnB1dDIDCQAAAAAAAAIFAAAABmlucHV0MgAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAAGaW5wdXRzCQAETAAAAAIFAAAADHNjYWxlZElucHV0MQkABEwAAAACBQAAAAxzY2FsZWRJbnB1dDIFAAAAA25pbAQAAAALJHQwMjMzNTI0MzMJAQAAABFmb3J3YXJkUGFzc0xheWVyMQAAAAQFAAAABmlucHV0cwUAAAANbGF5ZXIxV2VpZ2h0cwUAAAAMbGF5ZXIxQmlhc2VzAgAAAAZMYXllcjEEAAAADGxheWVyMU91dHB1dAgFAAAACyR0MDIzMzUyNDMzAAAAAl8xBAAAAAtkZWJ1Z0xheWVyMQgFAAAACyR0MDIzMzUyNDMzAAAAAl8yBAAAAAskdDAyNDM4MjU0MgkBAAAAEWZvcndhcmRQYXNzTGF5ZXIyAAAABAUAAAAMbGF5ZXIxT3V0cHV0BQAAAA1sYXllcjJXZWlnaHRzBQAAAAxsYXllcjJCaWFzZXMCAAAABkxheWVyMgQAAAAMbGF5ZXIyT3V0cHV0CAUAAAALJHQwMjQzODI1NDIAAAACXzEEAAAAC2RlYnVnTGF5ZXIyCAUAAAALJHQwMjQzODI1NDIAAAACXzIJAAROAAAAAgkABE4AAAACCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACAgAAAAZyZXN1bHQFAAAADGxheWVyMk91dHB1dAUAAAADbmlsBQAAAAtkZWJ1Z0xheWVyMQUAAAALZGVidWdMYXllcjIAAAAAFaLXgQ==", "height": 3082469, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: CTK5XZL5t8cmyyJ2vqgR2bTBcRpvXGeA2RrB6hGC8GVB Next: GY2gPoqivX3eeH3zPPj8SdvLMnbisXfuy2r24TQoJGgR Diff:
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let layer1Weights = [[600497, | |
4 | + | let layer1Weights = [[600497, 600732], [414197, 414253]] | |
5 | 5 | ||
6 | - | let layer1Biases = [- | |
6 | + | let layer1Biases = [-259051, -635637] | |
7 | 7 | ||
8 | 8 | let layer2Weights = [[832965, -897142]] | |
9 | 9 | ||
10 | 10 | let layer2Biases = [-381179] | |
11 | 11 | ||
12 | 12 | func exp_approximation (x) = { | |
13 | - | let scale = toBigInt(100000) | |
14 | - | let e = toBigInt(271828) | |
15 | - | let factor1 = fraction(x, scale, toBigInt(1)) | |
16 | - | let factor2 = fraction(fraction((x * x), scale, toBigInt(1)), toBigInt((2 * 100000)), toBigInt(1)) | |
17 | - | let factor3 = fraction(fraction(((x * x) * x), scale, toBigInt(1)), toBigInt(((6 * 100000) * 100000)), toBigInt(1)) | |
18 | - | fraction((((toBigInt(1000000) + factor1) + factor2) + factor3), toBigInt(1), toBigInt(1)) | |
13 | + | let scale = 10000 | |
14 | + | let scaled_x = (x / scale) | |
15 | + | let e = 27183 | |
16 | + | let factor1 = scaled_x | |
17 | + | let factor2 = ((scaled_x * scaled_x) / (2 * scale)) | |
18 | + | let factor3 = (((scaled_x * scaled_x) * scaled_x) / ((6 * scale) * scale)) | |
19 | + | (((10000 + factor1) + factor2) + factor3) | |
19 | 20 | } | |
20 | 21 | ||
21 | 22 | ||
22 | 23 | func sigmoid (z,debugPrefix) = { | |
23 | - | let base = | |
24 | - | let positiveZ = | |
24 | + | let base = 10000 | |
25 | + | let positiveZ = if ((0 > z)) | |
25 | 26 | then -(z) | |
26 | - | else z | |
27 | + | else z | |
27 | 28 | let expValue = exp_approximation(positiveZ) | |
28 | - | let sigValue = | |
29 | - | $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), | |
29 | + | let sigValue = ((base * 10000) / (base + expValue)) | |
30 | + | $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
30 | 31 | } | |
31 | 32 | ||
32 | 33 | ||
33 | 34 | func forwardPassLayer1 (input,weights,biases,debugPrefix) = { | |
34 | 35 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
35 | 36 | let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1]) | |
36 | - | let $ | |
37 | - | let debug0 = $ | |
38 | - | let sig0 = $ | |
39 | - | let $ | |
40 | - | let debug1 = $ | |
41 | - | let sig1 = $ | |
37 | + | let $t016721718 = sigmoid(sum0, "Layer1N0") | |
38 | + | let debug0 = $t016721718._1 | |
39 | + | let sig0 = $t016721718._2 | |
40 | + | let $t017231769 = sigmoid(sum1, "Layer1N1") | |
41 | + | let debug1 = $t017231769._1 | |
42 | + | let sig1 = $t017231769._2 | |
42 | 43 | $Tuple2([sig0, sig1], (debug0 ++ debug1)) | |
43 | 44 | } | |
44 | 45 | ||
45 | 46 | ||
46 | 47 | func forwardPassLayer2 (input,weights,biases,debugPrefix) = { | |
47 | 48 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
48 | - | let $ | |
49 | - | let debug0 = $ | |
50 | - | let sig0 = $ | |
49 | + | let $t020382084 = sigmoid(sum0, "Layer2N0") | |
50 | + | let debug0 = $t020382084._1 | |
51 | + | let sig0 = $t020382084._2 | |
51 | 52 | $Tuple2(sig0, debug0) | |
52 | 53 | } | |
53 | 54 | ||
61 | 62 | then 1000000 | |
62 | 63 | else 0 | |
63 | 64 | let inputs = [scaledInput1, scaledInput2] | |
64 | - | let $ | |
65 | - | let layer1Output = $ | |
66 | - | let debugLayer1 = $ | |
67 | - | let $ | |
68 | - | let layer2Output = $ | |
69 | - | let debugLayer2 = $ | |
65 | + | let $t023352433 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
66 | + | let layer1Output = $t023352433._1 | |
67 | + | let debugLayer1 = $t023352433._2 | |
68 | + | let $t024382542 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
69 | + | let layer2Output = $t024382542._1 | |
70 | + | let debugLayer2 = $t024382542._2 | |
70 | 71 | (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2) | |
71 | 72 | } | |
72 | 73 |
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let layer1Weights = [[600497, | |
4 | + | let layer1Weights = [[600497, 600732], [414197, 414253]] | |
5 | 5 | ||
6 | - | let layer1Biases = [- | |
6 | + | let layer1Biases = [-259051, -635637] | |
7 | 7 | ||
8 | 8 | let layer2Weights = [[832965, -897142]] | |
9 | 9 | ||
10 | 10 | let layer2Biases = [-381179] | |
11 | 11 | ||
12 | 12 | func exp_approximation (x) = { | |
13 | - | let scale = toBigInt(100000) | |
14 | - | let e = toBigInt(271828) | |
15 | - | let factor1 = fraction(x, scale, toBigInt(1)) | |
16 | - | let factor2 = fraction(fraction((x * x), scale, toBigInt(1)), toBigInt((2 * 100000)), toBigInt(1)) | |
17 | - | let factor3 = fraction(fraction(((x * x) * x), scale, toBigInt(1)), toBigInt(((6 * 100000) * 100000)), toBigInt(1)) | |
18 | - | fraction((((toBigInt(1000000) + factor1) + factor2) + factor3), toBigInt(1), toBigInt(1)) | |
13 | + | let scale = 10000 | |
14 | + | let scaled_x = (x / scale) | |
15 | + | let e = 27183 | |
16 | + | let factor1 = scaled_x | |
17 | + | let factor2 = ((scaled_x * scaled_x) / (2 * scale)) | |
18 | + | let factor3 = (((scaled_x * scaled_x) * scaled_x) / ((6 * scale) * scale)) | |
19 | + | (((10000 + factor1) + factor2) + factor3) | |
19 | 20 | } | |
20 | 21 | ||
21 | 22 | ||
22 | 23 | func sigmoid (z,debugPrefix) = { | |
23 | - | let base = | |
24 | - | let positiveZ = | |
24 | + | let base = 10000 | |
25 | + | let positiveZ = if ((0 > z)) | |
25 | 26 | then -(z) | |
26 | - | else z | |
27 | + | else z | |
27 | 28 | let expValue = exp_approximation(positiveZ) | |
28 | - | let sigValue = | |
29 | - | $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), | |
29 | + | let sigValue = ((base * 10000) / (base + expValue)) | |
30 | + | $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
30 | 31 | } | |
31 | 32 | ||
32 | 33 | ||
33 | 34 | func forwardPassLayer1 (input,weights,biases,debugPrefix) = { | |
34 | 35 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
35 | 36 | let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1]) | |
36 | - | let $ | |
37 | - | let debug0 = $ | |
38 | - | let sig0 = $ | |
39 | - | let $ | |
40 | - | let debug1 = $ | |
41 | - | let sig1 = $ | |
37 | + | let $t016721718 = sigmoid(sum0, "Layer1N0") | |
38 | + | let debug0 = $t016721718._1 | |
39 | + | let sig0 = $t016721718._2 | |
40 | + | let $t017231769 = sigmoid(sum1, "Layer1N1") | |
41 | + | let debug1 = $t017231769._1 | |
42 | + | let sig1 = $t017231769._2 | |
42 | 43 | $Tuple2([sig0, sig1], (debug0 ++ debug1)) | |
43 | 44 | } | |
44 | 45 | ||
45 | 46 | ||
46 | 47 | func forwardPassLayer2 (input,weights,biases,debugPrefix) = { | |
47 | 48 | let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0]) | |
48 | - | let $ | |
49 | - | let debug0 = $ | |
50 | - | let sig0 = $ | |
49 | + | let $t020382084 = sigmoid(sum0, "Layer2N0") | |
50 | + | let debug0 = $t020382084._1 | |
51 | + | let sig0 = $t020382084._2 | |
51 | 52 | $Tuple2(sig0, debug0) | |
52 | 53 | } | |
53 | 54 | ||
54 | 55 | ||
55 | 56 | @Callable(i) | |
56 | 57 | func predict (input1,input2) = { | |
57 | 58 | let scaledInput1 = if ((input1 == 1)) | |
58 | 59 | then 1000000 | |
59 | 60 | else 0 | |
60 | 61 | let scaledInput2 = if ((input2 == 1)) | |
61 | 62 | then 1000000 | |
62 | 63 | else 0 | |
63 | 64 | let inputs = [scaledInput1, scaledInput2] | |
64 | - | let $ | |
65 | - | let layer1Output = $ | |
66 | - | let debugLayer1 = $ | |
67 | - | let $ | |
68 | - | let layer2Output = $ | |
69 | - | let debugLayer2 = $ | |
65 | + | let $t023352433 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
66 | + | let layer1Output = $t023352433._1 | |
67 | + | let debugLayer1 = $t023352433._2 | |
68 | + | let $t024382542 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
69 | + | let layer2Output = $t024382542._1 | |
70 | + | let debugLayer2 = $t024382542._2 | |
70 | 71 | (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2) | |
71 | 72 | } | |
72 | 73 | ||
73 | 74 |
github/deemru/w8io/169f3d6 41.61 ms ◑![]()