tx · 6V35pBudomPg2sNkERM1SV5yreXyCvfUjZxcnWEAwv9b

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.04.28 12:46 [3082542] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "6V35pBudomPg2sNkERM1SV5yreXyCvfUjZxcnWEAwv9b", "fee": 1000000, "feeAssetId": null, "timestamp": 1714297589649, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "5r1dbZNfwD4tGPxPkJvxC65mDEB7awUGDyegCkXiLtjLGYNqrNAw9Qk6e8v6Ch6pXBnFu9ASpPMCrm7R2Exuo9Sj" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAgAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmxCQAETAAAAAIAAAAAAAAJKp0FAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLAUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwWCQAETAAAAAIA///////2TQoFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcYJAARMAAAAAgD///////JPiwUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAACmV4cF9hcHByb3gAAAABAAAAAXgEAAAABXNjYWxlAAAAAAAAAYagAwkAAGYAAAACCQAAaAAAAAIA//////////oFAAAABXNjYWxlBQAAAAF4AAAAAAAAAAABAwkAAGYAAAACBQAAAAF4CQAAaAAAAAIAAAAAAAAAAAYFAAAABXNjYWxlBQAAAAVzY2FsZQQAAAAMY29lZmZpY2llbnRzCQAETAAAAAIJAAUUAAAAAgAAAAAAAADqYAkAAGUAAAACBQAAAAVzY2FsZQAAAAAAAAAAAQkABEwAAAACCQAFFAAAAAIAAAAAAAAAw1AJAABlAAAAAgUAAAAFc2NhbGUAAAAAAAAAAAIJAARMAAAAAgkABRQAAAACAAAAAAAAAJxACQAAZQAAAAIFAAAABXNjYWxlAAAAAAAAAAADCQAETAAAAAIJAAUUAAAAAgAAAAAAAAB1MAkAAGUAAAACBQAAAAVzY2FsZQAAAAAAAAAACgkABEwAAAACCQAFFAAAAAIAAAAAAAAATiAJAABlAAAAAgUAAAAFc2NhbGUAAAAAAAAAABQJAARMAAAAAgkABRQAAAACAAAAAAAAACcQCQAAZQAAAAIFAAAABXNjYWxlAAAAAAAAAAAeCQAETAAAAAIJAAUUAAAAAgAAAAAAAAAAAAUAAAAFc2NhbGUJAARMAAAAAgkABRQAAAACAP///////9jwCQAAZAAAAAIFAAAABXNjYWxlAAAAAAAAAAAeCQAETAAAAAIJAAUUAAAAAgD///////+x4AkAAGQAAAACBQAAAAVzY2FsZQAAAAAAAAAAFAkABEwAAAACCQAFFAAAAAIA////////itAJAABkAAAAAgUAAAAFc2NhbGUAAAAAAAAAAAoJAARMAAAAAgkABRQAAAACAP///////2PACQAAZAAAAAIFAAAABXNjYWxlAAAAAAAAAAADCQAETAAAAAIJAAUUAAAAAgD///////88sAkAAGQAAAACBQAAAAVzY2FsZQAAAAAAAAAAAgkABEwAAAACCQAFFAAAAAIA////////FaAJAABkAAAAAgUAAAAFc2NhbGUAAAAAAAAAAAEFAAAAA25pbAQAAAAFaW5kZXgJAABpAAAAAgkAAGQAAAACBQAAAAF4AAAAAAAAAOpgAAAAAAAAACcQBAAAAAkkdDA5MjY5NjgJAAGRAAAAAgUAAAAMY29lZmZpY2llbnRzBQAAAAVpbmRleAQAAAALY29lZmZpY2llbnQIBQAAAAkkdDA5MjY5NjgAAAACXzEEAAAAAXkIBQAAAAkkdDA5MjY5NjgAAAACXzIFAAAAAXkBAAAAB3NpZ21vaWQAAAACAAAAAXoAAAALZGVidWdQcmVmaXgEAAAABGJhc2UAAAAAAAABhqAEAAAACXBvc2l0aXZlWgMJAABmAAAAAgAAAAAAAAAAAAUAAAABegkBAAAAAS0AAAABBQAAAAF6BQAAAAF6BAAAAAhleHBWYWx1ZQkBAAAACmV4cF9hcHByb3gAAAABBQAAAAlwb3NpdGl2ZVoEAAAACHNpZ1ZhbHVlCQAAZQAAAAIFAAAABGJhc2UJAABpAAAAAgkAAGgAAAACBQAAAARiYXNlBQAAAARiYXNlCQAAZAAAAAIFAAAABGJhc2UFAAAACGV4cFZhbHVlCQAFFAAAAAIJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACXBvc2l0aXZlWgUAAAAJcG9zaXRpdmVaCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAhleHBWYWx1ZQUAAAAIZXhwVmFsdWUJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACHNpZ1ZhbHVlBQAAAAhzaWdWYWx1ZQUAAAADbmlsBQAAAAhzaWdWYWx1ZQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEAAAABWlucHV0AAAAB3dlaWdodHMAAAAGYmlhc2VzAAAAC2RlYnVnUHJlZml4BAAAAARzdW0wCQAAZAAAAAIJAABkAAAAAgkAAGgAAAACCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAAkAAGgAAAACCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAQkAAGgAAAACCQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAAAAAAAAAAGGoAQAAAAEc3VtMQkAAGQAAAACCQAAZAAAAAIJAABoAAAAAgkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAEAAAAAAAAAAAAJAABoAAAAAgkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAEAAAAAAAAAAAEJAABoAAAAAgkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAEAAAAAAAABhqAEAAAACyR0MDE4MzMxODg2CQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTACAAAACExheWVyMU4wBAAAAA1kZWJ1Z0VudHJpZXMwCAUAAAALJHQwMTgzMzE4ODYAAAACXzEEAAAABHNpZzAIBQAAAAskdDAxODMzMTg4NgAAAAJfMgQAAAALJHQwMTg5MTE5NDQJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMQIAAAAITGF5ZXIxTjEEAAAADWRlYnVnRW50cmllczEIBQAAAAskdDAxODkxMTk0NAAAAAJfMQQAAAAEc2lnMQgFAAAACyR0MDE4OTExOTQ0AAAAAl8yBAAAAAlkZWJ1Z0luZm8JAAROAAAAAgUAAAANZGVidWdFbnRyaWVzMAUAAAANZGVidWdFbnRyaWVzMQQAAAAGb3V0cHV0CQAETAAAAAIFAAAABHNpZzAJAARMAAAAAgUAAAAEc2lnMQUAAAADbmlsCQAFFAAAAAIFAAAACWRlYnVnSW5mbwUAAAAGb3V0cHV0AQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQAAAAFaW5wdXQAAAAHd2VpZ2h0cwAAAAZiaWFzZXMAAAALZGVidWdQcmVmaXgEAAAABHN1bTAJAABkAAAAAgkAAGQAAAACCQAAaAAAAAIJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAAACQAAaAAAAAIJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAABCQAAaAAAAAIJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAAAAAAAAAAAYagBAAAAAskdDAyMjU0MjMwNwkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0wAgAAAAhMYXllcjJOMAQAAAANZGVidWdFbnRyaWVzMAgFAAAACyR0MDIyNTQyMzA3AAAAAl8xBAAAAARzaWcwCAUAAAALJHQwMjI1NDIzMDcAAAACXzIEAAAACWRlYnVnSW5mbwUAAAANZGVidWdFbnRyaWVzMAQAAAAGb3V0cHV0BQAAAARzaWcwCQAFFAAAAAIFAAAACWRlYnVnSW5mbwUAAAAGb3V0cHV0AAAAAQAAAAFpAQAAAAdwcmVkaWN0AAAAAgAAAAZpbnB1dDEAAAAGaW5wdXQyBAAAAAxzY2FsZWRJbnB1dDEDCQAAAAAAAAIFAAAABmlucHV0MQAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAAMc2NhbGVkSW5wdXQyAwkAAAAAAAACBQAAAAZpbnB1dDIAAAAAAAAAAAEAAAAAAAAPQkAAAAAAAAAAAAAEAAAABmlucHV0cwkABEwAAAACBQAAAAxzY2FsZWRJbnB1dDEJAARMAAAAAgUAAAAMc2NhbGVkSW5wdXQyBQAAAANuaWwEAAAACyR0MDI2MTkyNzE3CQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEBQAAAAZpbnB1dHMFAAAADWxheWVyMVdlaWdodHMFAAAADGxheWVyMUJpYXNlcwIAAAAGTGF5ZXIxBAAAAAtkZWJ1Z0xheWVyMQgFAAAACyR0MDI2MTkyNzE3AAAAAl8xBAAAAAxsYXllcjFPdXRwdXQIBQAAAAskdDAyNjE5MjcxNwAAAAJfMgQAAAALJHQwMjcyMjI4MjYJAQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQFAAAADGxheWVyMU91dHB1dAUAAAANbGF5ZXIyV2VpZ2h0cwUAAAAMbGF5ZXIyQmlhc2VzAgAAAAZMYXllcjIEAAAAC2RlYnVnTGF5ZXIyCAUAAAALJHQwMjcyMjI4MjYAAAACXzEEAAAADGxheWVyMk91dHB1dAgFAAAACyR0MDI3MjIyODI2AAAAAl8yCQAETgAAAAIJAAROAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAAGcmVzdWx0BQAAAAxsYXllcjJPdXRwdXQFAAAAA25pbAUAAAALZGVidWdMYXllcjEFAAAAC2RlYnVnTGF5ZXIyAAAAAGwGHDc=", "height": 3082542, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: 4mYq43JfanRZQyBETXNzpVZnazq9HeDF1xkokwGuKXa5 Next: EagziTUuatBGN4yrywpoprrknF46urgJ1q46iavxr1Ng Diff:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
4-let layer1Weights = [[600496, 600733], [414197, 414253]]
4+let layer1Weights = [[600497, 600733], [414197, 414252]]
55
6-let layer1Biases = [-259050, -635637]
6+let layer1Biases = [-259050, -635638]
77
8-let layer2Weights = [[832965, -897141]]
8+let layer2Weights = [[832966, -897141]]
99
1010 let layer2Biases = [-381179]
1111
12+func exp_approx (x) = {
13+ let scale = 100000
14+ if (((-6 * scale) > x))
15+ then 1
16+ else if ((x > (6 * scale)))
17+ then scale
18+ else {
19+ let coefficients = [$Tuple2(60000, (scale - 1)), $Tuple2(50000, (scale - 2)), $Tuple2(40000, (scale - 3)), $Tuple2(30000, (scale - 10)), $Tuple2(20000, (scale - 20)), $Tuple2(10000, (scale - 30)), $Tuple2(0, scale), $Tuple2(-10000, (scale + 30)), $Tuple2(-20000, (scale + 20)), $Tuple2(-30000, (scale + 10)), $Tuple2(-40000, (scale + 3)), $Tuple2(-50000, (scale + 2)), $Tuple2(-60000, (scale + 1))]
20+ let index = ((x + 60000) / 10000)
21+ let $t0926968 = coefficients[index]
22+ let coefficient = $t0926968._1
23+ let y = $t0926968._2
24+ y
25+ }
26+ }
27+
28+
1229 func sigmoid (z,debugPrefix) = {
13- let e = 2718281
14- let base = 1000000
30+ let base = 100000
1531 let positiveZ = if ((0 > z))
1632 then -(z)
1733 else z
18- let expPart = fraction(e, base, positiveZ)
19- let sigValue = fraction(base, (base + expPart), base)
20- $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expPart"), expPart), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
34+ let expValue = exp_approx(positiveZ)
35+ let sigValue = (base - ((base * base) / (base + expValue)))
36+ $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
2137 }
2238
2339
2440 func forwardPassLayer1 (input,weights,biases,debugPrefix) = {
25- let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
26- let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1])
27- let $t010791125 = sigmoid(sum0, "Layer1N0")
28- let debug0 = $t010791125._1
29- let sig0 = $t010791125._2
30- let $t011301176 = sigmoid(sum1, "Layer1N1")
31- let debug1 = $t011301176._1
32- let sig1 = $t011301176._2
33- $Tuple2([sig0, sig1], (debug0 ++ debug1))
41+ let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
42+ let sum1 = (((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (biases[1] * 100000))
43+ let $t018331886 = sigmoid(sum0, "Layer1N0")
44+ let debugEntries0 = $t018331886._1
45+ let sig0 = $t018331886._2
46+ let $t018911944 = sigmoid(sum1, "Layer1N1")
47+ let debugEntries1 = $t018911944._1
48+ let sig1 = $t018911944._2
49+ let debugInfo = (debugEntries0 ++ debugEntries1)
50+ let output = [sig0, sig1]
51+ $Tuple2(debugInfo, output)
3452 }
3553
3654
3755 func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
38- let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
39- let $t014451491 = sigmoid(sum0, "Layer2N0")
40- let debug0 = $t014451491._1
41- let sig0 = $t014451491._2
42- $Tuple2(sig0, debug0)
56+ let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
57+ let $t022542307 = sigmoid(sum0, "Layer2N0")
58+ let debugEntries0 = $t022542307._1
59+ let sig0 = $t022542307._2
60+ let debugInfo = debugEntries0
61+ let output = sig0
62+ $Tuple2(debugInfo, output)
4363 }
4464
4565
5272 then 1000000
5373 else 0
5474 let inputs = [scaledInput1, scaledInput2]
55- let $t017421840 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
56- let layer1Output = $t017421840._1
57- let debugLayer1 = $t017421840._2
58- let $t018451949 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
59- let layer2Output = $t018451949._1
60- let debugLayer2 = $t018451949._2
75+ let $t026192717 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
76+ let debugLayer1 = $t026192717._1
77+ let layer1Output = $t026192717._2
78+ let $t027222826 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
79+ let debugLayer2 = $t027222826._1
80+ let layer2Output = $t027222826._2
6181 (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2)
6282 }
6383
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
4-let layer1Weights = [[600496, 600733], [414197, 414253]]
4+let layer1Weights = [[600497, 600733], [414197, 414252]]
55
6-let layer1Biases = [-259050, -635637]
6+let layer1Biases = [-259050, -635638]
77
8-let layer2Weights = [[832965, -897141]]
8+let layer2Weights = [[832966, -897141]]
99
1010 let layer2Biases = [-381179]
1111
12+func exp_approx (x) = {
13+ let scale = 100000
14+ if (((-6 * scale) > x))
15+ then 1
16+ else if ((x > (6 * scale)))
17+ then scale
18+ else {
19+ let coefficients = [$Tuple2(60000, (scale - 1)), $Tuple2(50000, (scale - 2)), $Tuple2(40000, (scale - 3)), $Tuple2(30000, (scale - 10)), $Tuple2(20000, (scale - 20)), $Tuple2(10000, (scale - 30)), $Tuple2(0, scale), $Tuple2(-10000, (scale + 30)), $Tuple2(-20000, (scale + 20)), $Tuple2(-30000, (scale + 10)), $Tuple2(-40000, (scale + 3)), $Tuple2(-50000, (scale + 2)), $Tuple2(-60000, (scale + 1))]
20+ let index = ((x + 60000) / 10000)
21+ let $t0926968 = coefficients[index]
22+ let coefficient = $t0926968._1
23+ let y = $t0926968._2
24+ y
25+ }
26+ }
27+
28+
1229 func sigmoid (z,debugPrefix) = {
13- let e = 2718281
14- let base = 1000000
30+ let base = 100000
1531 let positiveZ = if ((0 > z))
1632 then -(z)
1733 else z
18- let expPart = fraction(e, base, positiveZ)
19- let sigValue = fraction(base, (base + expPart), base)
20- $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expPart"), expPart), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
34+ let expValue = exp_approx(positiveZ)
35+ let sigValue = (base - ((base * base) / (base + expValue)))
36+ $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
2137 }
2238
2339
2440 func forwardPassLayer1 (input,weights,biases,debugPrefix) = {
25- let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
26- let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1])
27- let $t010791125 = sigmoid(sum0, "Layer1N0")
28- let debug0 = $t010791125._1
29- let sig0 = $t010791125._2
30- let $t011301176 = sigmoid(sum1, "Layer1N1")
31- let debug1 = $t011301176._1
32- let sig1 = $t011301176._2
33- $Tuple2([sig0, sig1], (debug0 ++ debug1))
41+ let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
42+ let sum1 = (((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (biases[1] * 100000))
43+ let $t018331886 = sigmoid(sum0, "Layer1N0")
44+ let debugEntries0 = $t018331886._1
45+ let sig0 = $t018331886._2
46+ let $t018911944 = sigmoid(sum1, "Layer1N1")
47+ let debugEntries1 = $t018911944._1
48+ let sig1 = $t018911944._2
49+ let debugInfo = (debugEntries0 ++ debugEntries1)
50+ let output = [sig0, sig1]
51+ $Tuple2(debugInfo, output)
3452 }
3553
3654
3755 func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
38- let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
39- let $t014451491 = sigmoid(sum0, "Layer2N0")
40- let debug0 = $t014451491._1
41- let sig0 = $t014451491._2
42- $Tuple2(sig0, debug0)
56+ let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
57+ let $t022542307 = sigmoid(sum0, "Layer2N0")
58+ let debugEntries0 = $t022542307._1
59+ let sig0 = $t022542307._2
60+ let debugInfo = debugEntries0
61+ let output = sig0
62+ $Tuple2(debugInfo, output)
4363 }
4464
4565
4666 @Callable(i)
4767 func predict (input1,input2) = {
4868 let scaledInput1 = if ((input1 == 1))
4969 then 1000000
5070 else 0
5171 let scaledInput2 = if ((input2 == 1))
5272 then 1000000
5373 else 0
5474 let inputs = [scaledInput1, scaledInput2]
55- let $t017421840 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
56- let layer1Output = $t017421840._1
57- let debugLayer1 = $t017421840._2
58- let $t018451949 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
59- let layer2Output = $t018451949._1
60- let debugLayer2 = $t018451949._2
75+ let $t026192717 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
76+ let debugLayer1 = $t026192717._1
77+ let layer1Output = $t026192717._2
78+ let $t027222826 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
79+ let debugLayer2 = $t027222826._1
80+ let layer2Output = $t027222826._2
6181 (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2)
6282 }
6383
6484

github/deemru/w8io/169f3d6 
26.94 ms