tx · 63HL2ET9udUcXr31RyWXVSbexg4dmVv2RJVheQd1HjGm

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.04.16 23:30 [3065797] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "63HL2ET9udUcXr31RyWXVSbexg4dmVv2RJVheQd1HjGm", "fee": 1000000, "feeAssetId": null, "timestamp": 1713299503939, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "5djkcFQ8wp8YHeTXssn5irgfBH5NTLyUXyou19PcU1PP4g7kRx6ekvvW4bomCkWTS5iT8TCJ2DiQs6GbwJSFjxoJ" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAoAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAP//////8djcCQAETAAAAAIAAAAAAAAJfoYFAAAAA25pbAkABEwAAAACCQAETAAAAAIA///////x9YoJAARMAAAAAgD///////YOnQUAAAADbmlsCQAETAAAAAIJAARMAAAAAgD///////2q1gkABEwAAAACAAAAAAAAEXjQBQAAAANuaWwJAARMAAAAAgkABEwAAAACAP//////9IScCQAETAAAAAIA///////2xr8FAAAAA25pbAUAAAADbmlsAAAAAAxsYXllcjFCaWFzZXMJAARMAAAAAgD///////wUPgkABEwAAAACAAAAAAAAA4dVCQAETAAAAAIA///////4v14JAARMAAAAAgAAAAAAAALkTQUAAAADbmlsAAAAAA1sYXllcjJXZWlnaHRzCQAETAAAAAIJAARMAAAAAgD///////Rw7wkABEwAAAACAAAAAAAACG2NCQAETAAAAAIAAAAAAAAKCr8JAARMAAAAAgAAAAAAAAXB6AUAAAADbmlsCQAETAAAAAIJAARMAAAAAgAAAAAAAAp4FgkABEwAAAACAP//////90sDCQAETAAAAAIA///////2ymIJAARMAAAAAgD///////rtvgUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+yz+CQAETAAAAAIAAAAAAAAEfmUFAAAAA25pbAAAAAANbGF5ZXIzV2VpZ2h0cwkABEwAAAACCQAETAAAAAIA///////yW/QJAARMAAAAAgAAAAAAAA6FuAUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyM0JpYXNlcwkABEwAAAACAP///////7TdBQAAAANuaWwBAAAAB3NpZ21vaWQAAAACAAAAAXoAAAALZGVidWdQcmVmaXgEAAAAAWUAAAAAAAApekkEAAAABGJhc2UAAAAAAAAPQkAEAAAACXBvc2l0aXZlWgMJAABmAAAAAgAAAAAAAAAAAAUAAAABegkBAAAAAS0AAAABBQAAAAF6BQAAAAF6BAAAAAdleHBQYXJ0CQAAawAAAAMFAAAAAWUFAAAABGJhc2UFAAAACXBvc2l0aXZlWgQAAAAIc2lnVmFsdWUJAABrAAAAAwUAAAAEYmFzZQkAAGQAAAACBQAAAARiYXNlBQAAAAdleHBQYXJ0BQAAAARiYXNlCQAFFAAAAAIJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACXBvc2l0aXZlWgUAAAAJcG9zaXRpdmVaCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAdleHBQYXJ0BQAAAAdleHBQYXJ0CQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAhzaWdWYWx1ZQUAAAAIc2lnVmFsdWUFAAAAA25pbAUAAAAIc2lnVmFsdWUBAAAAEWZvcndhcmRQYXNzTGF5ZXIxAAAABAAAAAVpbnB1dAAAAAd3ZWlnaHRzAAAABmJpYXNlcwAAAAtkZWJ1Z1ByZWZpeAQAAAAEc3VtMAkAAGQAAAACCQAAZAAAAAIJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPQkAJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAPQkAJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAABAAAAARzdW0xCQAAZAAAAAIJAABkAAAAAgkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQAAAAAAAAAAAQAAAAAAAA9CQAkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAEEAAAABHN1bTIJAABkAAAAAgkAAGQAAAACCQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAD0JACQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAACAAAAAAAAAAABAAAAAAAAD0JACQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAgQAAAAEc3VtMwkAAGQAAAACCQAAZAAAAAIJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAPQkAJAABrAAAAAwkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAMAAAAAAAAAAAEAAAAAAAAPQkAJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAADBAAAAAskdDAxNDkzMTUzOQkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0wAgAAAAhMYXllcjFOMAQAAAAGZGVidWcwCAUAAAALJHQwMTQ5MzE1MzkAAAACXzEEAAAABHNpZzAIBQAAAAskdDAxNDkzMTUzOQAAAAJfMgQAAAALJHQwMTU0NDE1OTAJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMQIAAAAITGF5ZXIxTjEEAAAABmRlYnVnMQgFAAAACyR0MDE1NDQxNTkwAAAAAl8xBAAAAARzaWcxCAUAAAALJHQwMTU0NDE1OTAAAAACXzIEAAAACyR0MDE1OTUxNjQxCQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTICAAAACExheWVyMU4yBAAAAAZkZWJ1ZzIIBQAAAAskdDAxNTk1MTY0MQAAAAJfMQQAAAAEc2lnMggFAAAACyR0MDE1OTUxNjQxAAAAAl8yBAAAAAskdDAxNjQ2MTY5MgkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0zAgAAAAhMYXllcjFOMwQAAAAGZGVidWczCAUAAAALJHQwMTY0NjE2OTIAAAACXzEEAAAABHNpZzMIBQAAAAskdDAxNjQ2MTY5MgAAAAJfMgkABRQAAAACCQAETAAAAAIFAAAABHNpZzAJAARMAAAAAgUAAAAEc2lnMQkABEwAAAACBQAAAARzaWcyCQAETAAAAAIFAAAABHNpZzMFAAAAA25pbAkABE4AAAACCQAETgAAAAIJAAROAAAAAgUAAAAGZGVidWcwBQAAAAZkZWJ1ZzEFAAAABmRlYnVnMgUAAAAGZGVidWczAQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQAAAAFaW5wdXQAAAAHd2VpZ2h0cwAAAAZiaWFzZXMAAAALZGVidWdQcmVmaXgEAAAABHN1bTAJAABkAAAAAgkAAGQAAAACCQAAZAAAAAIJAABkAAAAAgkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAACCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAADCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAwAAAAAAAA9CQAkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAAEAAAABHN1bTEJAABkAAAAAgkAAGQAAAACCQAAZAAAAAIJAABkAAAAAgkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQAAAAAAAAAAAQAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAACCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQAAAAAAAAAAAgAAAAAAAA9CQAkAAGsAAAADCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAADCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQAAAAAAAAAAAwAAAAAAAA9CQAkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAEEAAAACyR0MDIyODgyMzM0CQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTACAAAACExheWVyMk4wBAAAAAZkZWJ1ZzAIBQAAAAskdDAyMjg4MjMzNAAAAAJfMQQAAAAEc2lnMAgFAAAACyR0MDIyODgyMzM0AAAAAl8yBAAAAAskdDAyMzM5MjM4NQkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0xAgAAAAhMYXllcjJOMQQAAAAGZGVidWcxCAUAAAALJHQwMjMzOTIzODUAAAACXzEEAAAABHNpZzEIBQAAAAskdDAyMzM5MjM4NQAAAAJfMgkABRQAAAACCQAETAAAAAIFAAAABHNpZzAJAARMAAAAAgUAAAAEc2lnMQUAAAADbmlsCQAETgAAAAIFAAAABmRlYnVnMAUAAAAGZGVidWcxAQAAABFmb3J3YXJkUGFzc0xheWVyMwAAAAQAAAAFaW5wdXQAAAAHd2VpZ2h0cwAAAAZiaWFzZXMAAAALZGVidWdQcmVmaXgEAAAABHN1bTAJAABkAAAAAgkAAGQAAAACCQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0JACQAAawAAAAMJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAD0JACQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAAQAAAALJHQwMjY1NDI3MDAJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMAIAAAAITGF5ZXIzTjAEAAAABmRlYnVnMAgFAAAACyR0MDI2NTQyNzAwAAAAAl8xBAAAAARzaWcwCAUAAAALJHQwMjY1NDI3MDAAAAACXzIJAAUUAAAAAgUAAAAEc2lnMAUAAAAGZGVidWcwAAAAAQAAAAFpAQAAAAdwcmVkaWN0AAAAAgAAAAZpbnB1dDEAAAAGaW5wdXQyBAAAAAxzY2FsZWRJbnB1dDEDCQAAAAAAAAIFAAAABmlucHV0MQAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAAMc2NhbGVkSW5wdXQyAwkAAAAAAAACBQAAAAZpbnB1dDIAAAAAAAAAAAEAAAAAAAAPQkAAAAAAAAAAAAAEAAAABmlucHV0cwkABEwAAAACBQAAAAxzY2FsZWRJbnB1dDEJAARMAAAAAgUAAAAMc2NhbGVkSW5wdXQyBQAAAANuaWwEAAAACyR0MDI5NTEzMDQ5CQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEBQAAAAZpbnB1dHMFAAAADWxheWVyMVdlaWdodHMFAAAADGxheWVyMUJpYXNlcwIAAAAGTGF5ZXIxBAAAAAxsYXllcjFPdXRwdXQIBQAAAAskdDAyOTUxMzA0OQAAAAJfMQQAAAALZGVidWdMYXllcjEIBQAAAAskdDAyOTUxMzA0OQAAAAJfMgQAAAALJHQwMzA1NDMxNTgJAQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQFAAAADGxheWVyMU91dHB1dAUAAAANbGF5ZXIyV2VpZ2h0cwUAAAAMbGF5ZXIyQmlhc2VzAgAAAAZMYXllcjIEAAAADGxheWVyMk91dHB1dAgFAAAACyR0MDMwNTQzMTU4AAAAAl8xBAAAAAtkZWJ1Z0xheWVyMggFAAAACyR0MDMwNTQzMTU4AAAAAl8yBAAAAAskdDAzMTYzMzI2NwkBAAAAEWZvcndhcmRQYXNzTGF5ZXIzAAAABAUAAAAMbGF5ZXIyT3V0cHV0BQAAAA1sYXllcjNXZWlnaHRzBQAAAAxsYXllcjNCaWFzZXMCAAAABkxheWVyMwQAAAAMbGF5ZXIzT3V0cHV0CAUAAAALJHQwMzE2MzMyNjcAAAACXzEEAAAAC2RlYnVnTGF5ZXIzCAUAAAALJHQwMzE2MzMyNjcAAAACXzIJAAROAAAAAgkABE4AAAACCQAETgAAAAIJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAICAAAABnJlc3VsdAUAAAAMbGF5ZXIzT3V0cHV0BQAAAANuaWwFAAAAC2RlYnVnTGF5ZXIxBQAAAAtkZWJ1Z0xheWVyMgUAAAALZGVidWdMYXllcjMAAAAAEnVuKA==", "height": 3065797, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: GrYgFiPFtYBHK5z9HdzqdS27NYqqNRNR7QHf3AxwJu1z Next: 2EAsscTWTcXLbZe4WsBMSSeTj11Qf1Abr2c6XurS2kqL Diff:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
4-let layer1Weights = [[600496, 600732], [414197, 414252]]
4+let layer1Weights = [[-927524, 622214], [-920182, -651619], [-152874, 1145040], [-752484, -604481]]
55
6-let layer1Biases = [-259050, -635637]
6+let layer1Biases = [-256962, 231253, -475298, 189517]
77
8-let layer2Weights = [[832966, -897142]]
8+let layer2Weights = [[-757521, 552333, 658111, 377320], [686102, -570621, -603550, -332354]]
99
10-let layer2Biases = [-381178]
10+let layer2Biases = [-316162, 294501]
11+
12+let layer3Weights = [[-893964, 951736]]
13+
14+let layer3Biases = [-19235]
1115
1216 func sigmoid (z,debugPrefix) = {
1317 let e = 2718281
2428 func forwardPassLayer1 (input,weights,biases,debugPrefix) = {
2529 let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
2630 let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1])
27- let $t010671113 = sigmoid(sum0, "Layer1N0")
28- let debug0 = $t010671113._1
29- let sig0 = $t010671113._2
30- let $t011181164 = sigmoid(sum1, "Layer1N1")
31- let debug1 = $t011181164._1
32- let sig1 = $t011181164._2
31+ let sum2 = ((fraction(input[0], weights[2][0], 1000000) + fraction(input[1], weights[2][1], 1000000)) + biases[2])
32+ let sum3 = ((fraction(input[0], weights[3][0], 1000000) + fraction(input[1], weights[3][1], 1000000)) + biases[3])
33+ let $t014931539 = sigmoid(sum0, "Layer1N0")
34+ let debug0 = $t014931539._1
35+ let sig0 = $t014931539._2
36+ let $t015441590 = sigmoid(sum1, "Layer1N1")
37+ let debug1 = $t015441590._1
38+ let sig1 = $t015441590._2
39+ let $t015951641 = sigmoid(sum2, "Layer1N2")
40+ let debug2 = $t015951641._1
41+ let sig2 = $t015951641._2
42+ let $t016461692 = sigmoid(sum3, "Layer1N3")
43+ let debug3 = $t016461692._1
44+ let sig3 = $t016461692._2
45+ $Tuple2([sig0, sig1, sig2, sig3], (((debug0 ++ debug1) ++ debug2) ++ debug3))
46+ }
47+
48+
49+func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
50+ let sum0 = ((((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + fraction(input[2], weights[0][2], 1000000)) + fraction(input[3], weights[0][3], 1000000)) + biases[0])
51+ let sum1 = ((((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + fraction(input[2], weights[1][2], 1000000)) + fraction(input[3], weights[1][3], 1000000)) + biases[1])
52+ let $t022882334 = sigmoid(sum0, "Layer2N0")
53+ let debug0 = $t022882334._1
54+ let sig0 = $t022882334._2
55+ let $t023392385 = sigmoid(sum1, "Layer2N1")
56+ let debug1 = $t023392385._1
57+ let sig1 = $t023392385._2
3358 $Tuple2([sig0, sig1], (debug0 ++ debug1))
3459 }
3560
3661
37-func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
62+func forwardPassLayer3 (input,weights,biases,debugPrefix) = {
3863 let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
39- let $t014331479 = sigmoid(sum0, "Layer2N0")
40- let debug0 = $t014331479._1
41- let sig0 = $t014331479._2
64+ let $t026542700 = sigmoid(sum0, "Layer3N0")
65+ let debug0 = $t026542700._1
66+ let sig0 = $t026542700._2
4267 $Tuple2(sig0, debug0)
4368 }
4469
5277 then 1000000
5378 else 0
5479 let inputs = [scaledInput1, scaledInput2]
55- let $t017301828 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
56- let layer1Output = $t017301828._1
57- let debugLayer1 = $t017301828._2
58- let $t018331937 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
59- let layer2Output = $t018331937._1
60- let debugLayer2 = $t018331937._2
61- (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2)
80+ let $t029513049 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
81+ let layer1Output = $t029513049._1
82+ let debugLayer1 = $t029513049._2
83+ let $t030543158 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
84+ let layer2Output = $t030543158._1
85+ let debugLayer2 = $t030543158._2
86+ let $t031633267 = forwardPassLayer3(layer2Output, layer3Weights, layer3Biases, "Layer3")
87+ let layer3Output = $t031633267._1
88+ let debugLayer3 = $t031633267._2
89+ ((([IntegerEntry("result", layer3Output)] ++ debugLayer1) ++ debugLayer2) ++ debugLayer3)
6290 }
6391
6492
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
4-let layer1Weights = [[600496, 600732], [414197, 414252]]
4+let layer1Weights = [[-927524, 622214], [-920182, -651619], [-152874, 1145040], [-752484, -604481]]
55
6-let layer1Biases = [-259050, -635637]
6+let layer1Biases = [-256962, 231253, -475298, 189517]
77
8-let layer2Weights = [[832966, -897142]]
8+let layer2Weights = [[-757521, 552333, 658111, 377320], [686102, -570621, -603550, -332354]]
99
10-let layer2Biases = [-381178]
10+let layer2Biases = [-316162, 294501]
11+
12+let layer3Weights = [[-893964, 951736]]
13+
14+let layer3Biases = [-19235]
1115
1216 func sigmoid (z,debugPrefix) = {
1317 let e = 2718281
1418 let base = 1000000
1519 let positiveZ = if ((0 > z))
1620 then -(z)
1721 else z
1822 let expPart = fraction(e, base, positiveZ)
1923 let sigValue = fraction(base, (base + expPart), base)
2024 $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expPart"), expPart), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
2125 }
2226
2327
2428 func forwardPassLayer1 (input,weights,biases,debugPrefix) = {
2529 let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
2630 let sum1 = ((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + biases[1])
27- let $t010671113 = sigmoid(sum0, "Layer1N0")
28- let debug0 = $t010671113._1
29- let sig0 = $t010671113._2
30- let $t011181164 = sigmoid(sum1, "Layer1N1")
31- let debug1 = $t011181164._1
32- let sig1 = $t011181164._2
31+ let sum2 = ((fraction(input[0], weights[2][0], 1000000) + fraction(input[1], weights[2][1], 1000000)) + biases[2])
32+ let sum3 = ((fraction(input[0], weights[3][0], 1000000) + fraction(input[1], weights[3][1], 1000000)) + biases[3])
33+ let $t014931539 = sigmoid(sum0, "Layer1N0")
34+ let debug0 = $t014931539._1
35+ let sig0 = $t014931539._2
36+ let $t015441590 = sigmoid(sum1, "Layer1N1")
37+ let debug1 = $t015441590._1
38+ let sig1 = $t015441590._2
39+ let $t015951641 = sigmoid(sum2, "Layer1N2")
40+ let debug2 = $t015951641._1
41+ let sig2 = $t015951641._2
42+ let $t016461692 = sigmoid(sum3, "Layer1N3")
43+ let debug3 = $t016461692._1
44+ let sig3 = $t016461692._2
45+ $Tuple2([sig0, sig1, sig2, sig3], (((debug0 ++ debug1) ++ debug2) ++ debug3))
46+ }
47+
48+
49+func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
50+ let sum0 = ((((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + fraction(input[2], weights[0][2], 1000000)) + fraction(input[3], weights[0][3], 1000000)) + biases[0])
51+ let sum1 = ((((fraction(input[0], weights[1][0], 1000000) + fraction(input[1], weights[1][1], 1000000)) + fraction(input[2], weights[1][2], 1000000)) + fraction(input[3], weights[1][3], 1000000)) + biases[1])
52+ let $t022882334 = sigmoid(sum0, "Layer2N0")
53+ let debug0 = $t022882334._1
54+ let sig0 = $t022882334._2
55+ let $t023392385 = sigmoid(sum1, "Layer2N1")
56+ let debug1 = $t023392385._1
57+ let sig1 = $t023392385._2
3358 $Tuple2([sig0, sig1], (debug0 ++ debug1))
3459 }
3560
3661
37-func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
62+func forwardPassLayer3 (input,weights,biases,debugPrefix) = {
3863 let sum0 = ((fraction(input[0], weights[0][0], 1000000) + fraction(input[1], weights[0][1], 1000000)) + biases[0])
39- let $t014331479 = sigmoid(sum0, "Layer2N0")
40- let debug0 = $t014331479._1
41- let sig0 = $t014331479._2
64+ let $t026542700 = sigmoid(sum0, "Layer3N0")
65+ let debug0 = $t026542700._1
66+ let sig0 = $t026542700._2
4267 $Tuple2(sig0, debug0)
4368 }
4469
4570
4671 @Callable(i)
4772 func predict (input1,input2) = {
4873 let scaledInput1 = if ((input1 == 1))
4974 then 1000000
5075 else 0
5176 let scaledInput2 = if ((input2 == 1))
5277 then 1000000
5378 else 0
5479 let inputs = [scaledInput1, scaledInput2]
55- let $t017301828 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
56- let layer1Output = $t017301828._1
57- let debugLayer1 = $t017301828._2
58- let $t018331937 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
59- let layer2Output = $t018331937._1
60- let debugLayer2 = $t018331937._2
61- (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2)
80+ let $t029513049 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
81+ let layer1Output = $t029513049._1
82+ let debugLayer1 = $t029513049._2
83+ let $t030543158 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
84+ let layer2Output = $t030543158._1
85+ let debugLayer2 = $t030543158._2
86+ let $t031633267 = forwardPassLayer3(layer2Output, layer3Weights, layer3Biases, "Layer3")
87+ let layer3Output = $t031633267._1
88+ let debugLayer3 = $t031633267._2
89+ ((([IntegerEntry("result", layer3Output)] ++ debugLayer1) ++ debugLayer2) ++ debugLayer3)
6290 }
6391
6492

github/deemru/w8io/169f3d6 
45.97 ms