tx · 5iNUFVUiuLxLyD9zsZtxLmY1BS5THCkkmFMT6kNw969S

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.05.24 17:59 [3120241] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "5iNUFVUiuLxLyD9zsZtxLmY1BS5THCkkmFMT6kNw969S", "fee": 1000000, "feeAssetId": null, "timestamp": 1716562750825, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "5M6rTHi4g7gfyNcQVYJcP6UtgzaUtjxtoXuqSZp8rjWdq5VzzLk4cbBeXQHxy9FuvpZPTU15mMbp6JJvbMPrknHJ" ], "script": "base64:BwIICAISBAoCAQEHAA93ZWlnaHRzX2xheWVyXzEJAMwIAgkAzAgCAJLVAwkAzAgCAKnVAwUDbmlsCQDMCAIJAMwIAgDMwwIJAMwIAgDRwwIFA25pbAUDbmlsAA5iaWFzZXNfbGF5ZXJfMQkAzAgCAM+1/v///////wEJAMwIAgC0j/z///////8BBQNuaWwAD3dlaWdodHNfbGF5ZXJfMgkAzAgCCQDMCAIA4YoFCQDMCAIAjsP6////////AQUDbmlsBQNuaWwADmJpYXNlc19sYXllcl8yCQDMCAIAmtb9////////AQUDbmlsAQ5saW5lYXJfZm9yd2FyZAMFaW5wdXQHd2VpZ2h0cwZiaWFzZXMEDXdlaWdodGVkX3N1bTEJAGQCCQBpAgkAZAIJAGgCCQCRAwIFBWlucHV0AAAJAJEDAgkAkQMCBQd3ZWlnaHRzAAAAAAkAaAIJAJEDAgUFaW5wdXQAAQkAkQMCCQCRAwIFB3dlaWdodHMAAAABAJBOCQCRAwIFBmJpYXNlcwAABA13ZWlnaHRlZF9zdW0yCQBkAgkAaQIJAGQCCQBoAgkAkQMCBQVpbnB1dAAACQCRAwIJAJEDAgUHd2VpZ2h0cwABAAAJAGgCCQCRAwIFBWlucHV0AAEJAJEDAgkAkQMCBQd3ZWlnaHRzAAEAAQCQTgkAkQMCBQZiaWFzZXMAAQkAzAgCBQ13ZWlnaHRlZF9zdW0xCQDMCAIFDXdlaWdodGVkX3N1bTIFA25pbAEHc2lnbW9pZAEFaW5wdXQDCQBmAgDwsf////////8BBQVpbnB1dAAAAwkAZgIFBWlucHV0AJBOAJBOCQBkAgCIJwkAaQIFBWlucHV0AAIBEnNpZ21vaWRfYWN0aXZhdGlvbgEGaW5wdXRzCQDMCAIJAQdzaWdtb2lkAQkAkQMCBQZpbnB1dHMAAAkAzAgCCQEHc2lnbW9pZAEJAJEDAgUGaW5wdXRzAAEFA25pbAEBaQEHcHJlZGljdAICeDECeDIEBmlucHV0cwkAzAgCCQBoAgUCeDEAkE4JAMwIAgkAaAIFAngyAJBOBQNuaWwEAnoxCQEObGluZWFyX2ZvcndhcmQDBQZpbnB1dHMFD3dlaWdodHNfbGF5ZXJfMQUOYmlhc2VzX2xheWVyXzEEAmExCQESc2lnbW9pZF9hY3RpdmF0aW9uAQUCejEECmRlYnVnX3oxXzEJAQxJbnRlZ2VyRW50cnkCAgpkZWJ1Z196MV8xCQCRAwIFAnoxAAAECmRlYnVnX3oxXzIJAQxJbnRlZ2VyRW50cnkCAgpkZWJ1Z196MV8yCQCRAwIFAnoxAAEECmRlYnVnX2ExXzEJAQxJbnRlZ2VyRW50cnkCAgpkZWJ1Z19hMV8xCQCRAwIFAmExAAAECmRlYnVnX2ExXzIJAQxJbnRlZ2VyRW50cnkCAgpkZWJ1Z19hMV8yCQCRAwIFAmExAAEEAnoyCQBkAgkAaQIJAGQCCQBoAgkAkQMCBQJhMQAACQCRAwIJAJEDAgUPd2VpZ2h0c19sYXllcl8yAAAAAAkAaAIJAJEDAgUCYTEAAQkAkQMCCQCRAwIFD3dlaWdodHNfbGF5ZXJfMgAAAAEAkE4JAJEDAgUOYmlhc2VzX2xheWVyXzIAAAQCYTIJAQdzaWdtb2lkAQUCejIEBnJlc3VsdAkAaQIFAmEyAJBOBAhkZWJ1Z196MgkBDEludGVnZXJFbnRyeQICCGRlYnVnX3oyBQJ6MgQIZGVidWdfYTIJAQxJbnRlZ2VyRW50cnkCAghkZWJ1Z19hMgUCYTIEDGRlYnVnX3Jlc3VsdAkBDEludGVnZXJFbnRyeQICDGRlYnVnX3Jlc3VsdAUGcmVzdWx0CQCUCgIJAMwIAgUKZGVidWdfejFfMQkAzAgCBQpkZWJ1Z196MV8yCQDMCAIFCmRlYnVnX2ExXzEJAMwIAgUKZGVidWdfYTFfMgkAzAgCBQhkZWJ1Z196MgkAzAgCBQhkZWJ1Z19hMgkAzAgCBQxkZWJ1Z19yZXN1bHQFA25pbAUGcmVzdWx0AIn6qtg=", "height": 3120241, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: EPzQDj6V1WSZyt31d5JN4yQdfxqisDnUmXHEcK9HZnRU Next: CSKB8iCwwXfruTvzLC9tm5jdhrri1eMoeLApwdfSEHCE Diff:
OldNewDifferences
1616 }
1717
1818
19-func relu (input) = {
20- let out1 = if ((input[0] > 0))
21- then input[0]
22- else 0
23- let out2 = if ((input[1] > 0))
24- then input[1]
25- else 0
26-[out1, out2]
27- }
28-
29-
3019 func sigmoid (input) = if ((-10000 > input))
3120 then 0
3221 else if ((input > 10000))
3423 else (5000 + (input / 2))
3524
3625
26+func sigmoid_activation (inputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])]
27+
28+
3729 @Callable(i)
3830 func predict (x1,x2) = {
3931 let inputs = [(x1 * 10000), (x2 * 10000)]
4032 let z1 = linear_forward(inputs, weights_layer_1, biases_layer_1)
41- let a1 = relu(z1)
33+ let a1 = sigmoid_activation(z1)
4234 let debug_z1_1 = IntegerEntry("debug_z1_1", z1[0])
4335 let debug_z1_2 = IntegerEntry("debug_z1_2", z1[1])
4436 let debug_a1_1 = IntegerEntry("debug_a1_1", a1[0])
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 7 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
44 let weights_layer_1 = [[60050, 60073], [41420, 41425]]
55
66 let biases_layer_1 = [-25905, -63564]
77
88 let weights_layer_2 = [[83297, -89714]]
99
1010 let biases_layer_2 = [-38118]
1111
1212 func linear_forward (input,weights,biases) = {
1313 let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0])
1414 let weighted_sum2 = ((((input[0] * weights[1][0]) + (input[1] * weights[1][1])) / 10000) + biases[1])
1515 [weighted_sum1, weighted_sum2]
1616 }
1717
1818
19-func relu (input) = {
20- let out1 = if ((input[0] > 0))
21- then input[0]
22- else 0
23- let out2 = if ((input[1] > 0))
24- then input[1]
25- else 0
26-[out1, out2]
27- }
28-
29-
3019 func sigmoid (input) = if ((-10000 > input))
3120 then 0
3221 else if ((input > 10000))
3322 then 10000
3423 else (5000 + (input / 2))
3524
3625
26+func sigmoid_activation (inputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])]
27+
28+
3729 @Callable(i)
3830 func predict (x1,x2) = {
3931 let inputs = [(x1 * 10000), (x2 * 10000)]
4032 let z1 = linear_forward(inputs, weights_layer_1, biases_layer_1)
41- let a1 = relu(z1)
33+ let a1 = sigmoid_activation(z1)
4234 let debug_z1_1 = IntegerEntry("debug_z1_1", z1[0])
4335 let debug_z1_2 = IntegerEntry("debug_z1_2", z1[1])
4436 let debug_a1_1 = IntegerEntry("debug_a1_1", a1[0])
4537 let debug_a1_2 = IntegerEntry("debug_a1_2", a1[1])
4638 let z2 = ((((a1[0] * weights_layer_2[0][0]) + (a1[1] * weights_layer_2[0][1])) / 10000) + biases_layer_2[0])
4739 let a2 = sigmoid(z2)
4840 let result = (a2 / 10000)
4941 let debug_z2 = IntegerEntry("debug_z2", z2)
5042 let debug_a2 = IntegerEntry("debug_a2", a2)
5143 let debug_result = IntegerEntry("debug_result", result)
5244 $Tuple2([debug_z1_1, debug_z1_2, debug_a1_1, debug_a1_2, debug_z2, debug_a2, debug_result], result)
5345 }
5446
5547

github/deemru/w8io/169f3d6 
31.25 ms