tx · 3SS2H6aEuX3vuyY6DmmqnW7womLnia6zsZ7b9RdzwT5j

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.04.28 12:33 [3082532] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "3SS2H6aEuX3vuyY6DmmqnW7womLnia6zsZ7b9RdzwT5j", "fee": 1000000, "feeAssetId": null, "timestamp": 1714296677086, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "kjthnLAyDCDpu3ZWrp8hkpoTMQ7dVc7s5AjxSHZJS6tiXCbEzcKifGJjxUKRRsQfY7oXBC3PT1eDTH3Y7vp4LFp" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAgAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmxCQAETAAAAAIAAAAAAAAJKpwFAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLAUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwWCQAETAAAAAIA///////2TQsFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcYJAARMAAAAAgD///////JPigUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAACmV4cF9hcHByb3gAAAABAAAAAXgEAAAABXNjYWxlAAAAAAAAAYagAwkAAGYAAAACCQAAaAAAAAIA//////////oFAAAABXNjYWxlBQAAAAF4AAAAAAAAAAABAwkAAGYAAAACBQAAAAF4CQAAaAAAAAIAAAAAAAAAAAYFAAAABXNjYWxlBQAAAAVzY2FsZQQAAAAMY29lZmZpY2llbnRzCQAETAAAAAIJAAUUAAAAAgAAAAAAAADqYAkAAGUAAAACBQAAAAVzY2FsZQAAAAAAAAAAAQkABEwAAAACCQAFFAAAAAIAAAAAAAAAw1AJAABlAAAAAgUAAAAFc2NhbGUAAAAAAAAAAAIJAARMAAAAAgkABRQAAAACAAAAAAAAAJxACQAAZQAAAAIFAAAABXNjYWxlAAAAAAAAAAADCQAETAAAAAIJAAUUAAAAAgAAAAAAAAB1MAkAAGUAAAACBQAAAAVzY2FsZQAAAAAAAAAACgkABEwAAAACCQAFFAAAAAIAAAAAAAAATiAJAABlAAAAAgUAAAAFc2NhbGUAAAAAAAAAABQJAARMAAAAAgkABRQAAAACAAAAAAAAACcQCQAAZQAAAAIFAAAABXNjYWxlAAAAAAAAAAAeCQAETAAAAAIJAAUUAAAAAgAAAAAAAAAAAAUAAAAFc2NhbGUJAARMAAAAAgkABRQAAAACAP///////9jwCQAAZAAAAAIFAAAABXNjYWxlAAAAAAAAAAAeCQAETAAAAAIJAAUUAAAAAgD///////+x4AkAAGQAAAACBQAAAAVzY2FsZQAAAAAAAAAAFAkABEwAAAACCQAFFAAAAAIA////////itAJAABkAAAAAgUAAAAFc2NhbGUAAAAAAAAAAAoJAARMAAAAAgkABRQAAAACAP///////2PACQAAZAAAAAIFAAAABXNjYWxlAAAAAAAAAAADCQAETAAAAAIJAAUUAAAAAgD///////88sAkAAGQAAAACBQAAAAVzY2FsZQAAAAAAAAAAAgkABEwAAAACCQAFFAAAAAIA////////FaAJAABkAAAAAgUAAAAFc2NhbGUAAAAAAAAAAAEFAAAAA25pbAQAAAAFaW5kZXgJAABpAAAAAgkAAGQAAAACBQAAAAF4AAAAAAAAAOpgAAAAAAAAACcQBAAAAAkkdDA5MjY5NjgJAAGRAAAAAgUAAAAMY29lZmZpY2llbnRzBQAAAAVpbmRleAQAAAALY29lZmZpY2llbnQIBQAAAAkkdDA5MjY5NjgAAAACXzEEAAAAAXkIBQAAAAkkdDA5MjY5NjgAAAACXzIFAAAAAXkBAAAAB3NpZ21vaWQAAAACAAAAAXoAAAALZGVidWdQcmVmaXgEAAAABGJhc2UAAAAAAAABhqAEAAAACXBvc2l0aXZlWgMJAABmAAAAAgAAAAAAAAAAAAUAAAABegkBAAAAAS0AAAABBQAAAAF6BQAAAAF6BAAAAAhleHBWYWx1ZQkBAAAACmV4cF9hcHByb3gAAAABBQAAAAlwb3NpdGl2ZVoEAAAACHNpZ1ZhbHVlCQAAZQAAAAIFAAAABGJhc2UJAABpAAAAAgkAAGgAAAACBQAAAARiYXNlBQAAAARiYXNlCQAAZAAAAAIFAAAABGJhc2UFAAAACGV4cFZhbHVlCQAFFAAAAAIJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACXBvc2l0aXZlWgUAAAAJcG9zaXRpdmVaCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAhleHBWYWx1ZQUAAAAIZXhwVmFsdWUJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACHNpZ1ZhbHVlBQAAAAhzaWdWYWx1ZQUAAAADbmlsBQAAAAhzaWdWYWx1ZQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEAAAABWlucHV0AAAAB3dlaWdodHMAAAAGYmlhc2VzAAAAC2RlYnVnUHJlZml4BAAAAARzdW0wCQAAZAAAAAIJAABkAAAAAgkAAGgAAAACCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAAkAAGgAAAACCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAQkAAGgAAAACCQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAAAAAAAAAAGGoAQAAAAEc3VtMQkAAGQAAAACCQAAZAAAAAIJAABoAAAAAgkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAEAAAAAAAAAAAAJAABoAAAAAgkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAEAAAAAAAAAAAEJAABoAAAAAgkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAEAAAAAAAABhqAEAAAACyR0MDE4MzMxODg2CQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTACAAAACExheWVyMU4wBAAAAA1kZWJ1Z0VudHJpZXMwCAUAAAALJHQwMTgzMzE4ODYAAAACXzEEAAAABHNpZzAIBQAAAAskdDAxODMzMTg4NgAAAAJfMgQAAAALJHQwMTg5MTE5NDQJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMQIAAAAITGF5ZXIxTjEEAAAADWRlYnVnRW50cmllczEIBQAAAAskdDAxODkxMTk0NAAAAAJfMQQAAAAEc2lnMQgFAAAACyR0MDE4OTExOTQ0AAAAAl8yBAAAAAlkZWJ1Z0luZm8JAAROAAAAAgUAAAANZGVidWdFbnRyaWVzMAUAAAANZGVidWdFbnRyaWVzMQQAAAAGb3V0cHV0CQAETAAAAAIFAAAABHNpZzAJAARMAAAAAgUAAAAEc2lnMQUAAAADbmlsCQAFFAAAAAIFAAAACWRlYnVnSW5mbwUAAAAGb3V0cHV0AQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQAAAAFaW5wdXQAAAAHd2VpZ2h0cwAAAAZiaWFzZXMAAAALZGVidWdQcmVmaXgEAAAABHN1bTAJAABkAAAAAgkAAGQAAAACCQAAaAAAAAIJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAAACQAAaAAAAAIJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAABCQAAaAAAAAIJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAAAAAAAAAAAYagBAAAAAskdDAyMjU0MjMwNwkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0wAgAAAAhMYXllcjJOMAQAAAANZGVidWdFbnRyaWVzMAgFAAAACyR0MDIyNTQyMzA3AAAAAl8xBAAAAARzaWcwCAUAAAALJHQwMjI1NDIzMDcAAAACXzIEAAAACWRlYnVnSW5mbwUAAAANZGVidWdFbnRyaWVzMAQAAAAGb3V0cHV0BQAAAARzaWcwCQAFFAAAAAIFAAAACWRlYnVnSW5mbwUAAAAGb3V0cHV0AAAAAQAAAAFpAQAAAAdwcmVkaWN0AAAAAgAAAAZpbnB1dDEAAAAGaW5wdXQyBAAAAAxzY2FsZWRJbnB1dDEDCQAAAAAAAAIFAAAABmlucHV0MQAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAAMc2NhbGVkSW5wdXQyAwkAAAAAAAACBQAAAAZpbnB1dDIAAAAAAAAAAAEAAAAAAAAPQkAAAAAAAAAAAAAEAAAABmlucHV0cwkABEwAAAACBQAAAAxzY2FsZWRJbnB1dDEJAARMAAAAAgUAAAAMc2NhbGVkSW5wdXQyBQAAAANuaWwEAAAACyR0MDI2MTkyNzE3CQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEBQAAAAZpbnB1dHMFAAAADWxheWVyMVdlaWdodHMFAAAADGxheWVyMUJpYXNlcwIAAAAGTGF5ZXIxBAAAAAtkZWJ1Z0xheWVyMQgFAAAACyR0MDI2MTkyNzE3AAAAAl8xBAAAAAxsYXllcjFPdXRwdXQIBQAAAAskdDAyNjE5MjcxNwAAAAJfMgQAAAALJHQwMjcyMjI4MjYJAQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQFAAAADGxheWVyMU91dHB1dAUAAAANbGF5ZXIyV2VpZ2h0cwUAAAAMbGF5ZXIyQmlhc2VzAgAAAAZMYXllcjIEAAAAC2RlYnVnTGF5ZXIyCAUAAAALJHQwMjcyMjI4MjYAAAACXzEEAAAADGxheWVyMk91dHB1dAgFAAAACyR0MDI3MjIyODI2AAAAAl8yCQAETgAAAAIJAAROAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAAGcmVzdWx0BQAAAAxsYXllcjJPdXRwdXQFAAAAA25pbAUAAAALZGVidWdMYXllcjEFAAAAC2RlYnVnTGF5ZXIyAAAAAD8dmTs=", "height": 3082532, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: BgXQzeibJ6sxd4Syjnb3oFzkazJ4kF1yu3ctYeGvh9Tu Next: EATSuZcqxZ3f4MpdgivbU9TvBRaU6kTdhJqYqJQa4wae Diff:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
4-let layer1Weights = [[600497, 600732], [414197, 414253]]
4+let layer1Weights = [[600497, 600732], [414197, 414252]]
55
6-let layer1Biases = [-259051, -635637]
6+let layer1Biases = [-259050, -635637]
77
8-let layer2Weights = [[832965, -897142]]
8+let layer2Weights = [[832966, -897142]]
99
1010 let layer2Biases = [-381179]
1111
1212 func exp_approx (x) = {
1313 let scale = 100000
1414 if (((-6 * scale) > x))
15- then 0
15+ then 1
1616 else if ((x > (6 * scale)))
1717 then scale
1818 else {
19- let coefficients = [$Tuple2(60000, 5000), $Tuple2(50000, 10000), $Tuple2(40000, 20000), $Tuple2(30000, 30000), $Tuple2(20000, 50000), $Tuple2(10000, 70000), $Tuple2(0, 100000), $Tuple2(-10000, 70000), $Tuple2(-20000, 50000), $Tuple2(-30000, 30000), $Tuple2(-40000, 20000), $Tuple2(-50000, 10000), $Tuple2(-60000, 5000)]
19+ let coefficients = [$Tuple2(60000, (scale - 1)), $Tuple2(50000, (scale - 2)), $Tuple2(40000, (scale - 3)), $Tuple2(30000, (scale - 10)), $Tuple2(20000, (scale - 20)), $Tuple2(10000, (scale - 30)), $Tuple2(0, scale), $Tuple2(-10000, (scale + 30)), $Tuple2(-20000, (scale + 20)), $Tuple2(-30000, (scale + 10)), $Tuple2(-40000, (scale + 3)), $Tuple2(-50000, (scale + 2)), $Tuple2(-60000, (scale + 1))]
2020 let index = ((x + 60000) / 10000)
21- let $t0811853 = coefficients[index]
22- let coefficient = $t0811853._1
23- let y = $t0811853._2
21+ let $t0926968 = coefficients[index]
22+ let coefficient = $t0926968._1
23+ let y = $t0926968._2
2424 y
2525 }
2626 }
3232 then -(z)
3333 else z
3434 let expValue = exp_approx(positiveZ)
35- let sigValue = ((base * base) / (base + expValue))
35+ let sigValue = (base - ((base * base) / (base + expValue)))
3636 $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
3737 }
3838
4040 func forwardPassLayer1 (input,weights,biases,debugPrefix) = {
4141 let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
4242 let sum1 = (((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (biases[1] * 100000))
43- let $t017231776 = sigmoid(sum0, "Layer1N0")
44- let debugEntries0 = $t017231776._1
45- let sig0 = $t017231776._2
46- let $t017811834 = sigmoid(sum1, "Layer1N1")
47- let debugEntries1 = $t017811834._1
48- let sig1 = $t017811834._2
43+ let $t018331886 = sigmoid(sum0, "Layer1N0")
44+ let debugEntries0 = $t018331886._1
45+ let sig0 = $t018331886._2
46+ let $t018911944 = sigmoid(sum1, "Layer1N1")
47+ let debugEntries1 = $t018911944._1
48+ let sig1 = $t018911944._2
4949 let debugInfo = (debugEntries0 ++ debugEntries1)
5050 let output = [sig0, sig1]
5151 $Tuple2(debugInfo, output)
5454
5555 func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
5656 let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
57- let $t021442197 = sigmoid(sum0, "Layer2N0")
58- let debugEntries0 = $t021442197._1
59- let sig0 = $t021442197._2
57+ let $t022542307 = sigmoid(sum0, "Layer2N0")
58+ let debugEntries0 = $t022542307._1
59+ let sig0 = $t022542307._2
6060 let debugInfo = debugEntries0
6161 let output = sig0
6262 $Tuple2(debugInfo, output)
7272 then 1000000
7373 else 0
7474 let inputs = [scaledInput1, scaledInput2]
75- let $t025092607 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
76- let debugLayer1 = $t025092607._1
77- let layer1Output = $t025092607._2
78- let $t026122716 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
79- let debugLayer2 = $t026122716._1
80- let layer2Output = $t026122716._2
75+ let $t026192717 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
76+ let debugLayer1 = $t026192717._1
77+ let layer1Output = $t026192717._2
78+ let $t027222826 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
79+ let debugLayer2 = $t027222826._1
80+ let layer2Output = $t027222826._2
8181 (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2)
8282 }
8383
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
4-let layer1Weights = [[600497, 600732], [414197, 414253]]
4+let layer1Weights = [[600497, 600732], [414197, 414252]]
55
6-let layer1Biases = [-259051, -635637]
6+let layer1Biases = [-259050, -635637]
77
8-let layer2Weights = [[832965, -897142]]
8+let layer2Weights = [[832966, -897142]]
99
1010 let layer2Biases = [-381179]
1111
1212 func exp_approx (x) = {
1313 let scale = 100000
1414 if (((-6 * scale) > x))
15- then 0
15+ then 1
1616 else if ((x > (6 * scale)))
1717 then scale
1818 else {
19- let coefficients = [$Tuple2(60000, 5000), $Tuple2(50000, 10000), $Tuple2(40000, 20000), $Tuple2(30000, 30000), $Tuple2(20000, 50000), $Tuple2(10000, 70000), $Tuple2(0, 100000), $Tuple2(-10000, 70000), $Tuple2(-20000, 50000), $Tuple2(-30000, 30000), $Tuple2(-40000, 20000), $Tuple2(-50000, 10000), $Tuple2(-60000, 5000)]
19+ let coefficients = [$Tuple2(60000, (scale - 1)), $Tuple2(50000, (scale - 2)), $Tuple2(40000, (scale - 3)), $Tuple2(30000, (scale - 10)), $Tuple2(20000, (scale - 20)), $Tuple2(10000, (scale - 30)), $Tuple2(0, scale), $Tuple2(-10000, (scale + 30)), $Tuple2(-20000, (scale + 20)), $Tuple2(-30000, (scale + 10)), $Tuple2(-40000, (scale + 3)), $Tuple2(-50000, (scale + 2)), $Tuple2(-60000, (scale + 1))]
2020 let index = ((x + 60000) / 10000)
21- let $t0811853 = coefficients[index]
22- let coefficient = $t0811853._1
23- let y = $t0811853._2
21+ let $t0926968 = coefficients[index]
22+ let coefficient = $t0926968._1
23+ let y = $t0926968._2
2424 y
2525 }
2626 }
2727
2828
2929 func sigmoid (z,debugPrefix) = {
3030 let base = 100000
3131 let positiveZ = if ((0 > z))
3232 then -(z)
3333 else z
3434 let expValue = exp_approx(positiveZ)
35- let sigValue = ((base * base) / (base + expValue))
35+ let sigValue = (base - ((base * base) / (base + expValue)))
3636 $Tuple2([IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
3737 }
3838
3939
4040 func forwardPassLayer1 (input,weights,biases,debugPrefix) = {
4141 let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
4242 let sum1 = (((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (biases[1] * 100000))
43- let $t017231776 = sigmoid(sum0, "Layer1N0")
44- let debugEntries0 = $t017231776._1
45- let sig0 = $t017231776._2
46- let $t017811834 = sigmoid(sum1, "Layer1N1")
47- let debugEntries1 = $t017811834._1
48- let sig1 = $t017811834._2
43+ let $t018331886 = sigmoid(sum0, "Layer1N0")
44+ let debugEntries0 = $t018331886._1
45+ let sig0 = $t018331886._2
46+ let $t018911944 = sigmoid(sum1, "Layer1N1")
47+ let debugEntries1 = $t018911944._1
48+ let sig1 = $t018911944._2
4949 let debugInfo = (debugEntries0 ++ debugEntries1)
5050 let output = [sig0, sig1]
5151 $Tuple2(debugInfo, output)
5252 }
5353
5454
5555 func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
5656 let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
57- let $t021442197 = sigmoid(sum0, "Layer2N0")
58- let debugEntries0 = $t021442197._1
59- let sig0 = $t021442197._2
57+ let $t022542307 = sigmoid(sum0, "Layer2N0")
58+ let debugEntries0 = $t022542307._1
59+ let sig0 = $t022542307._2
6060 let debugInfo = debugEntries0
6161 let output = sig0
6262 $Tuple2(debugInfo, output)
6363 }
6464
6565
6666 @Callable(i)
6767 func predict (input1,input2) = {
6868 let scaledInput1 = if ((input1 == 1))
6969 then 1000000
7070 else 0
7171 let scaledInput2 = if ((input2 == 1))
7272 then 1000000
7373 else 0
7474 let inputs = [scaledInput1, scaledInput2]
75- let $t025092607 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
76- let debugLayer1 = $t025092607._1
77- let layer1Output = $t025092607._2
78- let $t026122716 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
79- let debugLayer2 = $t026122716._1
80- let layer2Output = $t026122716._2
75+ let $t026192717 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
76+ let debugLayer1 = $t026192717._1
77+ let layer1Output = $t026192717._2
78+ let $t027222826 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
79+ let debugLayer2 = $t027222826._1
80+ let layer2Output = $t027222826._2
8181 (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2)
8282 }
8383
8484

github/deemru/w8io/026f985 
48.83 ms