tx · 2Mz8tbuiDBMobXfEPcNFhTBUL5fefaAc2nWNcrKZaF1L

3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat:  -0.00500000 Waves

2025.03.06 16:41 [3532229] invoke 3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat > 3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV commitTask()

3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV: checked_out_by_Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY_chatgpt_6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc: true -> null
3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV: 6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc_commit_timestamp_chatgpt: 1741268514625
3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV: 6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc_commit_height_chatgpt: 3532229
3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV: 6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc_result_chatgpt: "Long short-term memory (LSTM) is a type of recurrent neural network architecture developed to address the vanishing gradient problem in traditional RNNs, allowing for capturing long-term dependencies in sequential data. LSTMs utilize a system of gates to regulate the flow of information, enabling better retention and utilization of information over time in the network's memory cells."
3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV: 6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc_status_chatgpt: "checked_out" -> "done"

{ "type": 16, "id": "2Mz8tbuiDBMobXfEPcNFhTBUL5fefaAc2nWNcrKZaF1L", "fee": 500000, "feeAssetId": null, "timestamp": 1741268589314, "version": 2, "chainId": 84, "sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat", "senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY", "proofs": [ "dqcBE2NBwXudC5EQa1RQABVhkKYDzoQfLxxZKEkhJ7ZiWNvxQvBZXj8Yj3x7zdkCfj6HpyJrX3q4AhsrtQCcv4c" ], "dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV", "payment": [], "call": { "function": "commitTask", "args": [ { "type": "string", "value": "6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc" }, { "type": "string", "value": "Long short-term memory (LSTM) is a type of recurrent neural network architecture developed to address the vanishing gradient problem in traditional RNNs, allowing for capturing long-term dependencies in sequential data. LSTMs utilize a system of gates to regulate the flow of information, enabling better retention and utilization of information over time in the network's memory cells." } ] }, "height": 3532229, "applicationStatus": "succeeded", "spentComplexity": 67, "stateChanges": { "data": [ { "key": "6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc_status_chatgpt", "type": "string", "value": "done" }, { "key": "6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc_result_chatgpt", "type": "string", "value": "Long short-term memory (LSTM) is a type of recurrent neural network architecture developed to address the vanishing gradient problem in traditional RNNs, allowing for capturing long-term dependencies in sequential data. LSTMs utilize a system of gates to regulate the flow of information, enabling better retention and utilization of information over time in the network's memory cells." }, { "key": "6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc_commit_height_chatgpt", "type": "integer", "value": 3532229 }, { "key": "6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc_commit_timestamp_chatgpt", "type": "integer", "value": 1741268514625 }, { "key": "checked_out_by_Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY_chatgpt_6e6wn4Jd9oTMKve4zLbNtye51wt7E6MTDEYT1gkLZQSy_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc", "value": null } ], "transfers": [], "issues": [], "reissues": [], "burns": [], "sponsorFees": [], "leases": [], "leaseCancels": [], "invokes": [] } }

github/deemru/w8io/169f3d6 
5.99 ms