tx · 6qU8jB3UNEt4HxE8nGEeZa1zMxVZKscxUSF9fg7AUosd

3N9ttyLcRwDo7L4EmJkbS3ZFuQJygivupsL:  -0.00500000 Waves

2024.09.16 14:19 [3286158] invoke 3N9ttyLcRwDo7L4EmJkbS3ZFuQJygivupsL > 3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV commitTask()

3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV: checked_out_by_92ovWCy1Zf8CSsTLLLssC74m8yn5yPMqVp9fmVacou97_chatgpt_8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo: true -> null
3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV: 8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo_commit_timestamp_chatgpt: 1726485573984
3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV: 8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo_commit_height_chatgpt: 3286158
3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV: 8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo_result_chatgpt: "The rule of L'Hospital (or L'Hopital) is a method in calculus used to determine the limit of indeterminate forms like \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \). It was developed by the French mathematician Guillaume de l'Hpital.

The rule states that if you have a limit of the form:
\[ \lim_{x \to c} \frac{f(x)}{g(x)} \]
and both \( f(x) \) and \( g(x) \) approach 0 or both approach  infinity as \( x \) approaches \( c \), then the limit can be computed as:
\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x to c} \frac{f'(x)}{g'(x)} \]
**if** the limit on the right-hand side exists or reaches  infinity.

This rule is particularly useful because it simplifies the evaluation of limits that are otherwise difficult or impossible to evaluate using standard algebraic techniques alone. The application of L'Hospital's Rule can often be iterated if the resulting limit is still an indeterminate form."
3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV: 8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo_status_chatgpt: "checked_out" -> "done"

{ "type": 16, "id": "6qU8jB3UNEt4HxE8nGEeZa1zMxVZKscxUSF9fg7AUosd", "fee": 500000, "feeAssetId": null, "timestamp": 1726485585903, "version": 2, "chainId": 84, "sender": "3N9ttyLcRwDo7L4EmJkbS3ZFuQJygivupsL", "senderPublicKey": "92ovWCy1Zf8CSsTLLLssC74m8yn5yPMqVp9fmVacou97", "proofs": [ "444CfY2ZXfoZ5XVLEKxHScwpXpRbJvKub8dzxFoCTmWJ7CohK66LzXfgDVw4TpCuZFBYyNwNmzuK6QQYkoGg2fn7" ], "dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV", "payment": [], "call": { "function": "commitTask", "args": [ { "type": "string", "value": "8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo" }, { "type": "string", "value": "The rule of L'Hospital (or L'Hopital) is a method in calculus used to determine the limit of indeterminate forms like \\( \\frac{0}{0} \\) or \\( \\frac{\\infty}{\\infty} \\). It was developed by the French mathematician Guillaume de l'Hpital.\n\nThe rule states that if you have a limit of the form:\n\\[ \\lim_{x \\to c} \\frac{f(x)}{g(x)} \\]\nand both \\( f(x) \\) and \\( g(x) \\) approach 0 or both approach infinity as \\( x \\) approaches \\( c \\), then the limit can be computed as:\n\\[ \\lim_{x \\to c} \\frac{f(x)}{g(x)} = \\lim_{x to c} \\frac{f'(x)}{g'(x)} \\]\n**if** the limit on the right-hand side exists or reaches infinity.\n\nThis rule is particularly useful because it simplifies the evaluation of limits that are otherwise difficult or impossible to evaluate using standard algebraic techniques alone. The application of L'Hospital's Rule can often be iterated if the resulting limit is still an indeterminate form." } ] }, "height": 3286158, "applicationStatus": "succeeded", "spentComplexity": 67, "stateChanges": { "data": [ { "key": "8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo_status_chatgpt", "type": "string", "value": "done" }, { "key": "8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo_result_chatgpt", "type": "string", "value": "The rule of L'Hospital (or L'Hopital) is a method in calculus used to determine the limit of indeterminate forms like \\( \\frac{0}{0} \\) or \\( \\frac{\\infty}{\\infty} \\). It was developed by the French mathematician Guillaume de l'Hpital.\n\nThe rule states that if you have a limit of the form:\n\\[ \\lim_{x \\to c} \\frac{f(x)}{g(x)} \\]\nand both \\( f(x) \\) and \\( g(x) \\) approach 0 or both approach infinity as \\( x \\) approaches \\( c \\), then the limit can be computed as:\n\\[ \\lim_{x \\to c} \\frac{f(x)}{g(x)} = \\lim_{x to c} \\frac{f'(x)}{g'(x)} \\]\n**if** the limit on the right-hand side exists or reaches infinity.\n\nThis rule is particularly useful because it simplifies the evaluation of limits that are otherwise difficult or impossible to evaluate using standard algebraic techniques alone. The application of L'Hospital's Rule can often be iterated if the resulting limit is still an indeterminate form." }, { "key": "8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo_commit_height_chatgpt", "type": "integer", "value": 3286158 }, { "key": "8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo_commit_timestamp_chatgpt", "type": "integer", "value": 1726485573984 }, { "key": "checked_out_by_92ovWCy1Zf8CSsTLLLssC74m8yn5yPMqVp9fmVacou97_chatgpt_8AWtnRJqTdZ5ENKjePSZHUBsr4FxfHgcrAs2r54wCNMe_Hi8zo1vvbUZ7UHqRZUVZyRTM1KrsQ6CnpuMhQ3G2GMHo", "value": null } ], "transfers": [], "issues": [], "reissues": [], "burns": [], "sponsorFees": [], "leases": [], "leaseCancels": [], "invokes": [] } }

github/deemru/w8io/026f985 
12.88 ms