tx · 5711d92xhrVacoLCGnr4ueRPQEShjH5WZkJkuy3oQGDY

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.06.10 00:49 [3143761] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "5711d92xhrVacoLCGnr4ueRPQEShjH5WZkJkuy3oQGDY", "fee": 1000000, "feeAssetId": null, "timestamp": 1717969794872, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "5PBgCCSkCL8SzBdPraCTX6MBYKGZTBNi1c3zY5kPKNzxQXsEJZLVabFMtgNLzzfWfniJqSwobKrJTFGjcFXXt7Eh" ], "script": "base64:BwIHCAISAwoBEQsAD3dlaWdodHNfbGF5ZXJfMQkAzAgCCQDMCAIAsKv6////////AQkAzAgCAI3mAwUDbmlsCQDMCAIJAMwIAgCOsfr///////8BCQDMCAIA94L8////////AQUDbmlsCQDMCAIJAMwIAgDJiP////////8BCQDMCAIAx/4GBQNuaWwJAMwIAgkAzAgCAJC0+////////wEJAMwIAgDgp/z///////8BBQNuaWwFA25pbAAOYmlhc2VzX2xheWVyXzEJAMwIAgCgt/7///////8BCQDMCAIA1bQBCQDMCAIA14z9////////AQkAzAgCAIeUAQUDbmlsAA93ZWlnaHRzX2xheWVyXzIJAMwIAgkAzAgCAJiw+////////wEJAMwIAgDBrwMJAMwIAgCTggQJAMwIAgDkpgIFA25pbAkAzAgCCQDMCAIAgpgECQDMCAIAmsL8////////AQkAzAgCAL2o/P///////wEJAMwIAgCt/P3///////8BBQNuaWwFA25pbAAOYmlhc2VzX2xheWVyXzIJAMwIAgCAif7///////8BCQDMCAIAiuYBBQNuaWwAD3dlaWdodHNfbGF5ZXJfMwkAzAgCCQDMCAIAzMX6////////AQkAzAgCAMXnBQUDbmlsBQNuaWwADmJpYXNlc19sYXllcl8zCQDMCAIA/fD/////////AQUDbmlsARBsaW5lYXJfZm9yd2FyZF8xAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAAAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAEAkE4JAJEDAgUGYmlhc2VzAAAEDXdlaWdodGVkX3N1bTIJAGQCCQBpAgkAZAIJAGgCCQCRAwIFBWlucHV0AAAJAJEDAgkAkQMCBQd3ZWlnaHRzAAEAAAkAaAIJAJEDAgUFaW5wdXQAAQkAkQMCCQCRAwIFB3dlaWdodHMAAQABAJBOCQCRAwIFBmJpYXNlcwABBA13ZWlnaHRlZF9zdW0zCQBkAgkAaQIJAGQCCQBoAgkAkQMCBQVpbnB1dAAACQCRAwIJAJEDAgUHd2VpZ2h0cwACAAAJAGgCCQCRAwIFBWlucHV0AAEJAJEDAgkAkQMCBQd3ZWlnaHRzAAIAAQCQTgkAkQMCBQZiaWFzZXMAAgQNd2VpZ2h0ZWRfc3VtNAkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAwAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwADAAEAkE4JAJEDAgUGYmlhc2VzAAMJAMwIAgUNd2VpZ2h0ZWRfc3VtMQkAzAgCBQ13ZWlnaHRlZF9zdW0yCQDMCAIFDXdlaWdodGVkX3N1bTMJAMwIAgUNd2VpZ2h0ZWRfc3VtNAUDbmlsARBsaW5lYXJfZm9yd2FyZF8yAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAZAIJAGQCCQBoAgkAkQMCBQVpbnB1dAAACQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAAJAGgCCQCRAwIFBWlucHV0AAEJAJEDAgkAkQMCBQd3ZWlnaHRzAAAAAQkAaAIJAJEDAgUFaW5wdXQAAgkAkQMCCQCRAwIFB3dlaWdodHMAAAACCQBoAgkAkQMCBQVpbnB1dAADCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAMAkE4JAJEDAgUGYmlhc2VzAAAEDXdlaWdodGVkX3N1bTIJAGQCCQBpAgkAZAIJAGQCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAQAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwABAAEJAGgCCQCRAwIFBWlucHV0AAIJAJEDAgkAkQMCBQd3ZWlnaHRzAAEAAgkAaAIJAJEDAgUFaW5wdXQAAwkAkQMCCQCRAwIFB3dlaWdodHMAAQADAJBOCQCRAwIFBmJpYXNlcwABCQDMCAIFDXdlaWdodGVkX3N1bTEJAMwIAgUNd2VpZ2h0ZWRfc3VtMgUDbmlsARBsaW5lYXJfZm9yd2FyZF8zAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAAAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAEAkE4JAJEDAgUGYmlhc2VzAAAJAMwIAgUNd2VpZ2h0ZWRfc3VtMQUDbmlsAQdzaWdtb2lkAQVpbnB1dAMJAGYCAICP+////////wEFBWlucHV0AAADCQBmAgCgq/z///////8BBQVpbnB1dAkAawMJAGQCBQVpbnB1dACA8QQAfQCQTgMJAGYCAMDH/f///////wEFBWlucHV0CQBrAwkAZAIFBWlucHV0AODUAwBkAJBOAwkAZgIA4OP+////////AQUFaW5wdXQJAGsDCQBkAgUFaW5wdXQAwLgCAEsAkE4DCQBmAgAABQVpbnB1dAkAawMJAGQCBQVpbnB1dACgnAEAMgCQTgMJAGYCAKCcAQUFaW5wdXQJAGQCCQBrAwUFaW5wdXQAMgCQTgCIJwMJAGYCAMC4AgUFaW5wdXQJAGQCCQBrAwkAZQIFBWlucHV0AKCcAQBLAJBOAMw6AwkAZgIA4NQDBQVpbnB1dAkAZAIJAGsDCQBlAgUFaW5wdXQAwLgCAGQAkE4ArkQDCQBmAgCA8QQFBWlucHV0CQBkAgkAawMJAGUCBQVpbnB1dADg1AMAfQCQTgCfSQCQTgESc2lnbW9pZF9hY3RpdmF0aW9uAQZpbnB1dHMEC251bV9vdXRwdXRzCQCQAwEFBmlucHV0cwMJAAACBQtudW1fb3V0cHV0cwABCQDMCAIJAQdzaWdtb2lkAQkAkQMCBQZpbnB1dHMAAAUDbmlsAwkAAAIFC251bV9vdXRwdXRzAAIJAMwIAgkBB3NpZ21vaWQBCQCRAwIFBmlucHV0cwAACQDMCAIJAQdzaWdtb2lkAQkAkQMCBQZpbnB1dHMAAQUDbmlsCQDMCAIJAQdzaWdtb2lkAQkAkQMCBQZpbnB1dHMAAAkAzAgCCQEHc2lnbW9pZAEJAJEDAgUGaW5wdXRzAAEJAMwIAgkBB3NpZ21vaWQBCQCRAwIFBmlucHV0cwACCQDMCAIJAQdzaWdtb2lkAQkAkQMCBQZpbnB1dHMAAwUDbmlsAQFpAQdwcmVkaWN0AQZpbnB1dHMECXgxX3NjYWxlZAkAaAIJAJEDAgUGaW5wdXRzAAAAkE4ECXgyX3NjYWxlZAkAaAIJAJEDAgUGaW5wdXRzAAEAkE4EDXNjYWxlZF9pbnB1dHMJAMwIAgUJeDFfc2NhbGVkCQDMCAIFCXgyX3NjYWxlZAUDbmlsBAJ6MQkBEGxpbmVhcl9mb3J3YXJkXzEDBQ1zY2FsZWRfaW5wdXRzBQ93ZWlnaHRzX2xheWVyXzEFDmJpYXNlc19sYXllcl8xBAJhMQkBEnNpZ21vaWRfYWN0aXZhdGlvbgEFAnoxBAJ6MgkBEGxpbmVhcl9mb3J3YXJkXzIDBQJhMQUPd2VpZ2h0c19sYXllcl8yBQ5iaWFzZXNfbGF5ZXJfMgQCYTIJARJzaWdtb2lkX2FjdGl2YXRpb24BBQJ6MgQCejMJARBsaW5lYXJfZm9yd2FyZF8zAwUCYTIFD3dlaWdodHNfbGF5ZXJfMwUOYmlhc2VzX2xheWVyXzMEAmEzCQESc2lnbW9pZF9hY3RpdmF0aW9uAQUCejMEB3Jlc3VsdDAJAJEDAgUCYTMAAAQNZGVidWdfb3V0cHV0cwUDbmlsCQDOCAIJAMwIAgkBDEludGVnZXJFbnRyeQICEW1vdmVfcHJlZGljdGlvbl8wBQdyZXN1bHQwBQNuaWwFDWRlYnVnX291dHB1dHMA6KusYw==", "height": 3143761, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: 8Z98WBSbg5ME521Bx7gZ74ugVt4yCFseUCkB5daWEzqE Next: 8VVtUKLww8RFMZxyXTJzCbqcRAgJRfWJbWtuXA2dDDoU Diff:
OldNewDifferences
5656 else 10000
5757
5858
59-func sigmoid_activation (inputs,num_outputs) = if ((num_outputs == 1))
60- then [sigmoid(inputs[0])]
61- else [sigmoid(inputs[0]), sigmoid(inputs[1]), sigmoid(inputs[2]), sigmoid(inputs[3])]
59+func sigmoid_activation (inputs) = {
60+ let num_outputs = size(inputs)
61+ if ((num_outputs == 1))
62+ then [sigmoid(inputs[0])]
63+ else if ((num_outputs == 2))
64+ then [sigmoid(inputs[0]), sigmoid(inputs[1])]
65+ else [sigmoid(inputs[0]), sigmoid(inputs[1]), sigmoid(inputs[2]), sigmoid(inputs[3])]
66+ }
6267
6368
6469 @Callable(i)
6772 let x2_scaled = (inputs[1] * 10000)
6873 let scaled_inputs = [x1_scaled, x2_scaled]
6974 let z1 = linear_forward_1(scaled_inputs, weights_layer_1, biases_layer_1)
70- let a1 = sigmoid_activation(z1, 4)
75+ let a1 = sigmoid_activation(z1)
7176 let z2 = linear_forward_2(a1, weights_layer_2, biases_layer_2)
72- let a2 = sigmoid_activation(z2, 2)
77+ let a2 = sigmoid_activation(z2)
7378 let z3 = linear_forward_3(a2, weights_layer_3, biases_layer_3)
74- let a3 = sigmoid_activation(z3, 1)
79+ let a3 = sigmoid_activation(z3)
7580 let result0 = a3[0]
7681 let debug_outputs = nil
7782 ([IntegerEntry("move_prediction_0", result0)] ++ debug_outputs)
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 7 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
44 let weights_layer_1 = [[-92752, 62221], [-92018, -65161], [-15287, 114503], [-75248, -60448]]
55
66 let biases_layer_1 = [-25696, 23125, -47529, 18951]
77
88 let weights_layer_2 = [[-75752, 55233, 65811, 37732], [68610, -57062, -60355, -33235]]
99
1010 let biases_layer_2 = [-31616, 29450]
1111
1212 let weights_layer_3 = [[-89396, 95173]]
1313
1414 let biases_layer_3 = [-1923]
1515
1616 func linear_forward_1 (input,weights,biases) = {
1717 let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0])
1818 let weighted_sum2 = ((((input[0] * weights[1][0]) + (input[1] * weights[1][1])) / 10000) + biases[1])
1919 let weighted_sum3 = ((((input[0] * weights[2][0]) + (input[1] * weights[2][1])) / 10000) + biases[2])
2020 let weighted_sum4 = ((((input[0] * weights[3][0]) + (input[1] * weights[3][1])) / 10000) + biases[3])
2121 [weighted_sum1, weighted_sum2, weighted_sum3, weighted_sum4]
2222 }
2323
2424
2525 func linear_forward_2 (input,weights,biases) = {
2626 let weighted_sum1 = ((((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (input[2] * weights[0][2])) + (input[3] * weights[0][3])) / 10000) + biases[0])
2727 let weighted_sum2 = ((((((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (input[2] * weights[1][2])) + (input[3] * weights[1][3])) / 10000) + biases[1])
2828 [weighted_sum1, weighted_sum2]
2929 }
3030
3131
3232 func linear_forward_3 (input,weights,biases) = {
3333 let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0])
3434 [weighted_sum1]
3535 }
3636
3737
3838 func sigmoid (input) = if ((-80000 > input))
3939 then 0
4040 else if ((-60000 > input))
4141 then fraction((input + 80000), 125, 10000)
4242 else if ((-40000 > input))
4343 then fraction((input + 60000), 100, 10000)
4444 else if ((-20000 > input))
4545 then fraction((input + 40000), 75, 10000)
4646 else if ((0 > input))
4747 then fraction((input + 20000), 50, 10000)
4848 else if ((20000 > input))
4949 then (fraction(input, 50, 10000) + 5000)
5050 else if ((40000 > input))
5151 then (fraction((input - 20000), 75, 10000) + 7500)
5252 else if ((60000 > input))
5353 then (fraction((input - 40000), 100, 10000) + 8750)
5454 else if ((80000 > input))
5555 then (fraction((input - 60000), 125, 10000) + 9375)
5656 else 10000
5757
5858
59-func sigmoid_activation (inputs,num_outputs) = if ((num_outputs == 1))
60- then [sigmoid(inputs[0])]
61- else [sigmoid(inputs[0]), sigmoid(inputs[1]), sigmoid(inputs[2]), sigmoid(inputs[3])]
59+func sigmoid_activation (inputs) = {
60+ let num_outputs = size(inputs)
61+ if ((num_outputs == 1))
62+ then [sigmoid(inputs[0])]
63+ else if ((num_outputs == 2))
64+ then [sigmoid(inputs[0]), sigmoid(inputs[1])]
65+ else [sigmoid(inputs[0]), sigmoid(inputs[1]), sigmoid(inputs[2]), sigmoid(inputs[3])]
66+ }
6267
6368
6469 @Callable(i)
6570 func predict (inputs) = {
6671 let x1_scaled = (inputs[0] * 10000)
6772 let x2_scaled = (inputs[1] * 10000)
6873 let scaled_inputs = [x1_scaled, x2_scaled]
6974 let z1 = linear_forward_1(scaled_inputs, weights_layer_1, biases_layer_1)
70- let a1 = sigmoid_activation(z1, 4)
75+ let a1 = sigmoid_activation(z1)
7176 let z2 = linear_forward_2(a1, weights_layer_2, biases_layer_2)
72- let a2 = sigmoid_activation(z2, 2)
77+ let a2 = sigmoid_activation(z2)
7378 let z3 = linear_forward_3(a2, weights_layer_3, biases_layer_3)
74- let a3 = sigmoid_activation(z3, 1)
79+ let a3 = sigmoid_activation(z3)
7580 let result0 = a3[0]
7681 let debug_outputs = nil
7782 ([IntegerEntry("move_prediction_0", result0)] ++ debug_outputs)
7883 }
7984
8085

github/deemru/w8io/169f3d6 
31.35 ms