tx · HHerL6LJ9qpFpNLuhDtMDN5gutXSHW4tx8eUaoGnaiPv 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY: -0.01000000 Waves 2024.06.09 12:05 [3142991] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves
{ "type": 13, "id": "HHerL6LJ9qpFpNLuhDtMDN5gutXSHW4tx8eUaoGnaiPv", "fee": 1000000, "feeAssetId": null, "timestamp": 1717923983241, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "33oghp6tiQBD2SusffYqPVMsUxtZ5U3dx9ya7MLaFV3xxxf4j69RkvKX8Ah2VgSBQtMCRRfbrQYBTiJpXwPz3W2W" ], "script": "base64:BwIICAISBAoCAQEIAA93ZWlnaHRzX2xheWVyXzEJAMwIAgkAzAgCAJHVAwkAzAgCAKnVAwUDbmlsCQDMCAIJAMwIAgDLwwIJAMwIAgDRwwIFA25pbAUDbmlsAA5iaWFzZXNfbGF5ZXJfMQkAzAgCAM+1/v///////wEJAMwIAgC1j/z///////8BBQNuaWwAD3dlaWdodHNfbGF5ZXJfMgkAzAgCCQDMCAIA4IoFCQDMCAIAjsP6////////AQUDbmlsBQNuaWwADmJpYXNlc19sYXllcl8yCQDMCAIAm9b9////////AQUDbmlsARBsaW5lYXJfZm9yd2FyZF8xAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAAAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAEAkE4JAJEDAgUGYmlhc2VzAAAEDXdlaWdodGVkX3N1bTIJAGQCCQBpAgkAZAIJAGgCCQCRAwIFBWlucHV0AAAJAJEDAgkAkQMCBQd3ZWlnaHRzAAEAAAkAaAIJAJEDAgUFaW5wdXQAAQkAkQMCCQCRAwIFB3dlaWdodHMAAQABAJBOCQCRAwIFBmJpYXNlcwABCQDMCAIFDXdlaWdodGVkX3N1bTEJAMwIAgUNd2VpZ2h0ZWRfc3VtMgUDbmlsARBsaW5lYXJfZm9yd2FyZF8yAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAAAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAEAkE4JAJEDAgUGYmlhc2VzAAAJAMwIAgUNd2VpZ2h0ZWRfc3VtMQUDbmlsAQdzaWdtb2lkAQVpbnB1dAMJAGYCAICP+////////wEFBWlucHV0AAADCQBmAgCgq/z///////8BBQVpbnB1dAkAawMJAGQCBQVpbnB1dACA8QQAfQCQTgMJAGYCAMDH/f///////wEFBWlucHV0CQBrAwkAZAIFBWlucHV0AODUAwBkAJBOAwkAZgIA4OP+////////AQUFaW5wdXQJAGsDCQBkAgUFaW5wdXQAwLgCAEsAkE4DCQBmAgAABQVpbnB1dAkAawMJAGQCBQVpbnB1dACgnAEAMgCQTgMJAGYCAKCcAQUFaW5wdXQJAGQCCQBrAwUFaW5wdXQAMgCQTgCIJwMJAGYCAMC4AgUFaW5wdXQJAGQCCQBrAwkAZQIFBWlucHV0AKCcAQBLAJBOAMw6AwkAZgIA4NQDBQVpbnB1dAkAZAIJAGsDCQBlAgUFaW5wdXQAwLgCAGQAkE4ArkQDCQBmAgCA8QQFBWlucHV0CQBkAgkAawMJAGUCBQVpbnB1dADg1AMAfQCQTgCfSQCQTgESc2lnbW9pZF9hY3RpdmF0aW9uAgZpbnB1dHMLbnVtX291dHB1dHMDCQAAAgULbnVtX291dHB1dHMAAQkAzAgCCQEHc2lnbW9pZAEJAJEDAgUGaW5wdXRzAAAFA25pbAkAzAgCCQEHc2lnbW9pZAEJAJEDAgUGaW5wdXRzAAAJAMwIAgkBB3NpZ21vaWQBCQCRAwIFBmlucHV0cwABBQNuaWwBAWkBB3ByZWRpY3QCAngxAngyBAl4MV9zY2FsZWQJAGgCBQJ4MQCQTgQJeDJfc2NhbGVkCQBoAgUCeDIAkE4EBmlucHV0cwkAzAgCBQl4MV9zY2FsZWQJAMwIAgUJeDJfc2NhbGVkBQNuaWwEAnoxCQEQbGluZWFyX2ZvcndhcmRfMQMFBmlucHV0cwUPd2VpZ2h0c19sYXllcl8xBQ5iaWFzZXNfbGF5ZXJfMQQCYTEJARJzaWdtb2lkX2FjdGl2YXRpb24CBQJ6MQACBAJ6MgkBEGxpbmVhcl9mb3J3YXJkXzIDBQJhMQUPd2VpZ2h0c19sYXllcl8yBQ5iaWFzZXNfbGF5ZXJfMgQCYTIJARJzaWdtb2lkX2FjdGl2YXRpb24CBQJ6MgABBAdyZXN1bHQwCQCRAwIFAmEyAAAEDWRlYnVnX291dHB1dHMFA25pbAkAzggCCQDMCAIJAQxJbnRlZ2VyRW50cnkCAhFtb3ZlX3ByZWRpY3Rpb25fMAUHcmVzdWx0MAUDbmlsBQ1kZWJ1Z19vdXRwdXRzAEXyKko=", "height": 3142991, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: J2Z8FYd8ykhAxTCi9Ww9Y86Pod2jAmTLqaBdtSG5GXiY Next: 3urCdRx3L3rHQQGL5mbei1eajgXgC8eNfCmHFASkDFV9 Diff:
Old | New | Differences | |
---|---|---|---|
43 | 43 | else 10000 | |
44 | 44 | ||
45 | 45 | ||
46 | - | func sigmoid_activation (inputs,num_outputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])] | |
46 | + | func sigmoid_activation (inputs,num_outputs) = if ((num_outputs == 1)) | |
47 | + | then [sigmoid(inputs[0])] | |
48 | + | else [sigmoid(inputs[0]), sigmoid(inputs[1])] | |
47 | 49 | ||
48 | 50 | ||
49 | 51 | @Callable(i) |
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 7 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | 4 | let weights_layer_1 = [[60049, 60073], [41419, 41425]] | |
5 | 5 | ||
6 | 6 | let biases_layer_1 = [-25905, -63563] | |
7 | 7 | ||
8 | 8 | let weights_layer_2 = [[83296, -89714]] | |
9 | 9 | ||
10 | 10 | let biases_layer_2 = [-38117] | |
11 | 11 | ||
12 | 12 | func linear_forward_1 (input,weights,biases) = { | |
13 | 13 | let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0]) | |
14 | 14 | let weighted_sum2 = ((((input[0] * weights[1][0]) + (input[1] * weights[1][1])) / 10000) + biases[1]) | |
15 | 15 | [weighted_sum1, weighted_sum2] | |
16 | 16 | } | |
17 | 17 | ||
18 | 18 | ||
19 | 19 | func linear_forward_2 (input,weights,biases) = { | |
20 | 20 | let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0]) | |
21 | 21 | [weighted_sum1] | |
22 | 22 | } | |
23 | 23 | ||
24 | 24 | ||
25 | 25 | func sigmoid (input) = if ((-80000 > input)) | |
26 | 26 | then 0 | |
27 | 27 | else if ((-60000 > input)) | |
28 | 28 | then fraction((input + 80000), 125, 10000) | |
29 | 29 | else if ((-40000 > input)) | |
30 | 30 | then fraction((input + 60000), 100, 10000) | |
31 | 31 | else if ((-20000 > input)) | |
32 | 32 | then fraction((input + 40000), 75, 10000) | |
33 | 33 | else if ((0 > input)) | |
34 | 34 | then fraction((input + 20000), 50, 10000) | |
35 | 35 | else if ((20000 > input)) | |
36 | 36 | then (fraction(input, 50, 10000) + 5000) | |
37 | 37 | else if ((40000 > input)) | |
38 | 38 | then (fraction((input - 20000), 75, 10000) + 7500) | |
39 | 39 | else if ((60000 > input)) | |
40 | 40 | then (fraction((input - 40000), 100, 10000) + 8750) | |
41 | 41 | else if ((80000 > input)) | |
42 | 42 | then (fraction((input - 60000), 125, 10000) + 9375) | |
43 | 43 | else 10000 | |
44 | 44 | ||
45 | 45 | ||
46 | - | func sigmoid_activation (inputs,num_outputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])] | |
46 | + | func sigmoid_activation (inputs,num_outputs) = if ((num_outputs == 1)) | |
47 | + | then [sigmoid(inputs[0])] | |
48 | + | else [sigmoid(inputs[0]), sigmoid(inputs[1])] | |
47 | 49 | ||
48 | 50 | ||
49 | 51 | @Callable(i) | |
50 | 52 | func predict (x1,x2) = { | |
51 | 53 | let x1_scaled = (x1 * 10000) | |
52 | 54 | let x2_scaled = (x2 * 10000) | |
53 | 55 | let inputs = [x1_scaled, x2_scaled] | |
54 | 56 | let z1 = linear_forward_1(inputs, weights_layer_1, biases_layer_1) | |
55 | 57 | let a1 = sigmoid_activation(z1, 2) | |
56 | 58 | let z2 = linear_forward_2(a1, weights_layer_2, biases_layer_2) | |
57 | 59 | let a2 = sigmoid_activation(z2, 1) | |
58 | 60 | let result0 = a2[0] | |
59 | 61 | let debug_outputs = nil | |
60 | 62 | ([IntegerEntry("move_prediction_0", result0)] ++ debug_outputs) | |
61 | 63 | } | |
62 | 64 | ||
63 | 65 |
github/deemru/w8io/169f3d6 25.72 ms ◑