tx · HHerL6LJ9qpFpNLuhDtMDN5gutXSHW4tx8eUaoGnaiPv

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.06.09 12:05 [3142991] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "HHerL6LJ9qpFpNLuhDtMDN5gutXSHW4tx8eUaoGnaiPv", "fee": 1000000, "feeAssetId": null, "timestamp": 1717923983241, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "33oghp6tiQBD2SusffYqPVMsUxtZ5U3dx9ya7MLaFV3xxxf4j69RkvKX8Ah2VgSBQtMCRRfbrQYBTiJpXwPz3W2W" ], "script": "base64:BwIICAISBAoCAQEIAA93ZWlnaHRzX2xheWVyXzEJAMwIAgkAzAgCAJHVAwkAzAgCAKnVAwUDbmlsCQDMCAIJAMwIAgDLwwIJAMwIAgDRwwIFA25pbAUDbmlsAA5iaWFzZXNfbGF5ZXJfMQkAzAgCAM+1/v///////wEJAMwIAgC1j/z///////8BBQNuaWwAD3dlaWdodHNfbGF5ZXJfMgkAzAgCCQDMCAIA4IoFCQDMCAIAjsP6////////AQUDbmlsBQNuaWwADmJpYXNlc19sYXllcl8yCQDMCAIAm9b9////////AQUDbmlsARBsaW5lYXJfZm9yd2FyZF8xAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAAAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAEAkE4JAJEDAgUGYmlhc2VzAAAEDXdlaWdodGVkX3N1bTIJAGQCCQBpAgkAZAIJAGgCCQCRAwIFBWlucHV0AAAJAJEDAgkAkQMCBQd3ZWlnaHRzAAEAAAkAaAIJAJEDAgUFaW5wdXQAAQkAkQMCCQCRAwIFB3dlaWdodHMAAQABAJBOCQCRAwIFBmJpYXNlcwABCQDMCAIFDXdlaWdodGVkX3N1bTEJAMwIAgUNd2VpZ2h0ZWRfc3VtMgUDbmlsARBsaW5lYXJfZm9yd2FyZF8yAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAAAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAEAkE4JAJEDAgUGYmlhc2VzAAAJAMwIAgUNd2VpZ2h0ZWRfc3VtMQUDbmlsAQdzaWdtb2lkAQVpbnB1dAMJAGYCAICP+////////wEFBWlucHV0AAADCQBmAgCgq/z///////8BBQVpbnB1dAkAawMJAGQCBQVpbnB1dACA8QQAfQCQTgMJAGYCAMDH/f///////wEFBWlucHV0CQBrAwkAZAIFBWlucHV0AODUAwBkAJBOAwkAZgIA4OP+////////AQUFaW5wdXQJAGsDCQBkAgUFaW5wdXQAwLgCAEsAkE4DCQBmAgAABQVpbnB1dAkAawMJAGQCBQVpbnB1dACgnAEAMgCQTgMJAGYCAKCcAQUFaW5wdXQJAGQCCQBrAwUFaW5wdXQAMgCQTgCIJwMJAGYCAMC4AgUFaW5wdXQJAGQCCQBrAwkAZQIFBWlucHV0AKCcAQBLAJBOAMw6AwkAZgIA4NQDBQVpbnB1dAkAZAIJAGsDCQBlAgUFaW5wdXQAwLgCAGQAkE4ArkQDCQBmAgCA8QQFBWlucHV0CQBkAgkAawMJAGUCBQVpbnB1dADg1AMAfQCQTgCfSQCQTgESc2lnbW9pZF9hY3RpdmF0aW9uAgZpbnB1dHMLbnVtX291dHB1dHMDCQAAAgULbnVtX291dHB1dHMAAQkAzAgCCQEHc2lnbW9pZAEJAJEDAgUGaW5wdXRzAAAFA25pbAkAzAgCCQEHc2lnbW9pZAEJAJEDAgUGaW5wdXRzAAAJAMwIAgkBB3NpZ21vaWQBCQCRAwIFBmlucHV0cwABBQNuaWwBAWkBB3ByZWRpY3QCAngxAngyBAl4MV9zY2FsZWQJAGgCBQJ4MQCQTgQJeDJfc2NhbGVkCQBoAgUCeDIAkE4EBmlucHV0cwkAzAgCBQl4MV9zY2FsZWQJAMwIAgUJeDJfc2NhbGVkBQNuaWwEAnoxCQEQbGluZWFyX2ZvcndhcmRfMQMFBmlucHV0cwUPd2VpZ2h0c19sYXllcl8xBQ5iaWFzZXNfbGF5ZXJfMQQCYTEJARJzaWdtb2lkX2FjdGl2YXRpb24CBQJ6MQACBAJ6MgkBEGxpbmVhcl9mb3J3YXJkXzIDBQJhMQUPd2VpZ2h0c19sYXllcl8yBQ5iaWFzZXNfbGF5ZXJfMgQCYTIJARJzaWdtb2lkX2FjdGl2YXRpb24CBQJ6MgABBAdyZXN1bHQwCQCRAwIFAmEyAAAEDWRlYnVnX291dHB1dHMFA25pbAkAzggCCQDMCAIJAQxJbnRlZ2VyRW50cnkCAhFtb3ZlX3ByZWRpY3Rpb25fMAUHcmVzdWx0MAUDbmlsBQ1kZWJ1Z19vdXRwdXRzAEXyKko=", "height": 3142991, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: J2Z8FYd8ykhAxTCi9Ww9Y86Pod2jAmTLqaBdtSG5GXiY Next: 3urCdRx3L3rHQQGL5mbei1eajgXgC8eNfCmHFASkDFV9 Diff:
OldNewDifferences
4343 else 10000
4444
4545
46-func sigmoid_activation (inputs,num_outputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])]
46+func sigmoid_activation (inputs,num_outputs) = if ((num_outputs == 1))
47+ then [sigmoid(inputs[0])]
48+ else [sigmoid(inputs[0]), sigmoid(inputs[1])]
4749
4850
4951 @Callable(i)
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 7 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
44 let weights_layer_1 = [[60049, 60073], [41419, 41425]]
55
66 let biases_layer_1 = [-25905, -63563]
77
88 let weights_layer_2 = [[83296, -89714]]
99
1010 let biases_layer_2 = [-38117]
1111
1212 func linear_forward_1 (input,weights,biases) = {
1313 let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0])
1414 let weighted_sum2 = ((((input[0] * weights[1][0]) + (input[1] * weights[1][1])) / 10000) + biases[1])
1515 [weighted_sum1, weighted_sum2]
1616 }
1717
1818
1919 func linear_forward_2 (input,weights,biases) = {
2020 let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0])
2121 [weighted_sum1]
2222 }
2323
2424
2525 func sigmoid (input) = if ((-80000 > input))
2626 then 0
2727 else if ((-60000 > input))
2828 then fraction((input + 80000), 125, 10000)
2929 else if ((-40000 > input))
3030 then fraction((input + 60000), 100, 10000)
3131 else if ((-20000 > input))
3232 then fraction((input + 40000), 75, 10000)
3333 else if ((0 > input))
3434 then fraction((input + 20000), 50, 10000)
3535 else if ((20000 > input))
3636 then (fraction(input, 50, 10000) + 5000)
3737 else if ((40000 > input))
3838 then (fraction((input - 20000), 75, 10000) + 7500)
3939 else if ((60000 > input))
4040 then (fraction((input - 40000), 100, 10000) + 8750)
4141 else if ((80000 > input))
4242 then (fraction((input - 60000), 125, 10000) + 9375)
4343 else 10000
4444
4545
46-func sigmoid_activation (inputs,num_outputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])]
46+func sigmoid_activation (inputs,num_outputs) = if ((num_outputs == 1))
47+ then [sigmoid(inputs[0])]
48+ else [sigmoid(inputs[0]), sigmoid(inputs[1])]
4749
4850
4951 @Callable(i)
5052 func predict (x1,x2) = {
5153 let x1_scaled = (x1 * 10000)
5254 let x2_scaled = (x2 * 10000)
5355 let inputs = [x1_scaled, x2_scaled]
5456 let z1 = linear_forward_1(inputs, weights_layer_1, biases_layer_1)
5557 let a1 = sigmoid_activation(z1, 2)
5658 let z2 = linear_forward_2(a1, weights_layer_2, biases_layer_2)
5759 let a2 = sigmoid_activation(z2, 1)
5860 let result0 = a2[0]
5961 let debug_outputs = nil
6062 ([IntegerEntry("move_prediction_0", result0)] ++ debug_outputs)
6163 }
6264
6365

github/deemru/w8io/169f3d6 
25.72 ms