tx · Hv9h4RHHWAKLP6LMA99tehzrvZXUkvLkodFdaMPd9nDH 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY: -0.01000000 Waves 2024.06.01 15:32 [3131630] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves
{ "type": 13, "id": "Hv9h4RHHWAKLP6LMA99tehzrvZXUkvLkodFdaMPd9nDH", "fee": 1000000, "feeAssetId": null, "timestamp": 1717245201067, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "2Hs6q6K27SFni1qyhfWdg19QvGDupgT6pWHYEnQCg5X7vmaW34LfWXQzrEFRijroFxM9r3HoKzK9YdM4z1F5hjDf" ], "script": "base64:BwIHCAISAwoBEQgAD3dlaWdodHNfbGF5ZXJfMQkAzAgCCQDMCAIAkdUDCQDMCAIAqdUDBQNuaWwJAMwIAgkAzAgCAMvDAgkAzAgCANHDAgUDbmlsBQNuaWwADmJpYXNlc19sYXllcl8xCQDMCAIAz7X+////////AQkAzAgCALWP/P///////wEFA25pbAAPd2VpZ2h0c19sYXllcl8yCQDMCAIJAMwIAgDgigUJAMwIAgCOw/r///////8BBQNuaWwFA25pbAAOYmlhc2VzX2xheWVyXzIJAMwIAgCb1v3///////8BBQNuaWwBEGxpbmVhcl9mb3J3YXJkXzEDBWlucHV0B3dlaWdodHMGYmlhc2VzBA13ZWlnaHRlZF9zdW0xCQBkAgkAaQIJAGQCCQBoAgkAkQMCBQVpbnB1dAAACQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAAJAGgCCQCRAwIFBWlucHV0AAEJAJEDAgkAkQMCBQd3ZWlnaHRzAAAAAQCQTgkAkQMCBQZiaWFzZXMAAAQNd2VpZ2h0ZWRfc3VtMgkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAQAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwABAAEAkE4JAJEDAgUGYmlhc2VzAAEJAMwIAgUNd2VpZ2h0ZWRfc3VtMQkAzAgCBQ13ZWlnaHRlZF9zdW0yBQNuaWwBEGxpbmVhcl9mb3J3YXJkXzIDBWlucHV0B3dlaWdodHMGYmlhc2VzBA13ZWlnaHRlZF9zdW0xCQBkAgkAaQIJAGQCCQBoAgkAkQMCBQVpbnB1dAAACQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAAJAGgCCQCRAwIFBWlucHV0AAEJAJEDAgkAkQMCBQd3ZWlnaHRzAAAAAQCQTgkAkQMCBQZiaWFzZXMAAAkAzAgCBQ13ZWlnaHRlZF9zdW0xBQNuaWwBB3NpZ21vaWQBBWlucHV0AwkAZgIAgI/7////////AQUFaW5wdXQAAAMJAGYCAKCr/P///////wEFBWlucHV0CQBrAwkAZAIFBWlucHV0AIDxBAB9AJBOAwkAZgIAwMf9////////AQUFaW5wdXQJAGsDCQBkAgUFaW5wdXQA4NQDAGQAkE4DCQBmAgDg4/7///////8BBQVpbnB1dAkAawMJAGQCBQVpbnB1dADAuAIASwCQTgMJAGYCAAAFBWlucHV0CQBrAwkAZAIFBWlucHV0AKCcAQAyAJBOAwkAZgIAoJwBBQVpbnB1dAkAZAIJAGsDBQVpbnB1dAAyAJBOAIgnAwkAZgIAwLgCBQVpbnB1dAkAZAIJAGsDCQBlAgUFaW5wdXQAoJwBAEsAkE4AzDoDCQBmAgDg1AMFBWlucHV0CQBkAgkAawMJAGUCBQVpbnB1dADAuAIAZACQTgCuRAMJAGYCAIDxBAUFaW5wdXQJAGQCCQBrAwkAZQIFBWlucHV0AODUAwB9AJBOAJ9JAJBOARJzaWdtb2lkX2FjdGl2YXRpb24CBmlucHV0cwtudW1fb3V0cHV0cwMJAAACBQtudW1fb3V0cHV0cwABCQDMCAIJAQdzaWdtb2lkAQkAkQMCBQZpbnB1dHMAAAUDbmlsCQDMCAIJAQdzaWdtb2lkAQkAkQMCBQZpbnB1dHMAAAkAzAgCCQEHc2lnbW9pZAEJAJEDAgUGaW5wdXRzAAEFA25pbAEBaQEHcHJlZGljdAEGaW5wdXRzBA1pbnB1dHNfc2NhbGVkCQDMCAIJAGgCCQCRAwIFBmlucHV0cwAAAJBOCQDMCAIJAGgCCQCRAwIFBmlucHV0cwABAJBOBQNuaWwEAnoxCQEQbGluZWFyX2ZvcndhcmRfMQMFDWlucHV0c19zY2FsZWQFD3dlaWdodHNfbGF5ZXJfMQUOYmlhc2VzX2xheWVyXzEEAmExCQESc2lnbW9pZF9hY3RpdmF0aW9uAgUCejEAAgQCejIJARBsaW5lYXJfZm9yd2FyZF8yAwUCYTEFD3dlaWdodHNfbGF5ZXJfMgUOYmlhc2VzX2xheWVyXzIEAmEyCQESc2lnbW9pZF9hY3RpdmF0aW9uAgUCejIAAQQHcmVzdWx0MAkAkQMCBQJhMgAABA1kZWJ1Z19vdXRwdXRzBQNuaWwJAM4IAgkAzAgCCQEMSW50ZWdlckVudHJ5AgIRbW92ZV9wcmVkaWN0aW9uXzAFB3Jlc3VsdDAFA25pbAUNZGVidWdfb3V0cHV0cwBdgrpY", "height": 3131630, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: 8DLJpLx8NfRS2MqFEbYqsi5zVS4CNWwfxb8z8wBKsRPS Next: C3g1BvwA7tVar5cyBNFrmnosWH6rA7YinsgTMkTqsy1h Diff:
Old | New | Differences | |
---|---|---|---|
43 | 43 | else 10000 | |
44 | 44 | ||
45 | 45 | ||
46 | - | func sigmoid_activation (inputs,num_outputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])] | |
46 | + | func sigmoid_activation (inputs,num_outputs) = if ((num_outputs == 1)) | |
47 | + | then [sigmoid(inputs[0])] | |
48 | + | else [sigmoid(inputs[0]), sigmoid(inputs[1])] | |
47 | 49 | ||
48 | 50 | ||
49 | 51 | @Callable(i) |
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 7 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | 4 | let weights_layer_1 = [[60049, 60073], [41419, 41425]] | |
5 | 5 | ||
6 | 6 | let biases_layer_1 = [-25905, -63563] | |
7 | 7 | ||
8 | 8 | let weights_layer_2 = [[83296, -89714]] | |
9 | 9 | ||
10 | 10 | let biases_layer_2 = [-38117] | |
11 | 11 | ||
12 | 12 | func linear_forward_1 (input,weights,biases) = { | |
13 | 13 | let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0]) | |
14 | 14 | let weighted_sum2 = ((((input[0] * weights[1][0]) + (input[1] * weights[1][1])) / 10000) + biases[1]) | |
15 | 15 | [weighted_sum1, weighted_sum2] | |
16 | 16 | } | |
17 | 17 | ||
18 | 18 | ||
19 | 19 | func linear_forward_2 (input,weights,biases) = { | |
20 | 20 | let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0]) | |
21 | 21 | [weighted_sum1] | |
22 | 22 | } | |
23 | 23 | ||
24 | 24 | ||
25 | 25 | func sigmoid (input) = if ((-80000 > input)) | |
26 | 26 | then 0 | |
27 | 27 | else if ((-60000 > input)) | |
28 | 28 | then fraction((input + 80000), 125, 10000) | |
29 | 29 | else if ((-40000 > input)) | |
30 | 30 | then fraction((input + 60000), 100, 10000) | |
31 | 31 | else if ((-20000 > input)) | |
32 | 32 | then fraction((input + 40000), 75, 10000) | |
33 | 33 | else if ((0 > input)) | |
34 | 34 | then fraction((input + 20000), 50, 10000) | |
35 | 35 | else if ((20000 > input)) | |
36 | 36 | then (fraction(input, 50, 10000) + 5000) | |
37 | 37 | else if ((40000 > input)) | |
38 | 38 | then (fraction((input - 20000), 75, 10000) + 7500) | |
39 | 39 | else if ((60000 > input)) | |
40 | 40 | then (fraction((input - 40000), 100, 10000) + 8750) | |
41 | 41 | else if ((80000 > input)) | |
42 | 42 | then (fraction((input - 60000), 125, 10000) + 9375) | |
43 | 43 | else 10000 | |
44 | 44 | ||
45 | 45 | ||
46 | - | func sigmoid_activation (inputs,num_outputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])] | |
46 | + | func sigmoid_activation (inputs,num_outputs) = if ((num_outputs == 1)) | |
47 | + | then [sigmoid(inputs[0])] | |
48 | + | else [sigmoid(inputs[0]), sigmoid(inputs[1])] | |
47 | 49 | ||
48 | 50 | ||
49 | 51 | @Callable(i) | |
50 | 52 | func predict (inputs) = { | |
51 | 53 | let inputs_scaled = [(inputs[0] * 10000), (inputs[1] * 10000)] | |
52 | 54 | let z1 = linear_forward_1(inputs_scaled, weights_layer_1, biases_layer_1) | |
53 | 55 | let a1 = sigmoid_activation(z1, 2) | |
54 | 56 | let z2 = linear_forward_2(a1, weights_layer_2, biases_layer_2) | |
55 | 57 | let a2 = sigmoid_activation(z2, 1) | |
56 | 58 | let result0 = a2[0] | |
57 | 59 | let debug_outputs = nil | |
58 | 60 | ([IntegerEntry("move_prediction_0", result0)] ++ debug_outputs) | |
59 | 61 | } | |
60 | 62 | ||
61 | 63 |
github/deemru/w8io/026f985 24.09 ms ◑