tx · HQYVbfLQm6q7Et1MgYX3SjNGapVKGrrmzK5duBWV2fLi

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.05.04 11:47 [3091161] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "HQYVbfLQm6q7Et1MgYX3SjNGapVKGrrmzK5duBWV2fLi", "fee": 1000000, "feeAssetId": null, "timestamp": 1714812492950, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "2ZVGoA64vK9mEiXosJoWafczHnpCQRhkpGKQbYExvXnJTjB2JqrLXCuh9DVn7rXXmYJS7YSe5kbUr2WdfxkrcRm5" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAgAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmwCQAETAAAAAIAAAAAAAAJKp0FAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLQUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwWCQAETAAAAAIA///////2TQsFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcYJAARMAAAAAgD///////JPiwUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAABHJlbHUAAAABAAAAAXgDCQAAZgAAAAIFAAAAAXgAAAAAAAAAAAAFAAAAAXgAAAAAAAAAAAABAAAADnNpZ21vaWRfYXBwcm94AAAAAQAAAAF4AwkAAGYAAAACAP///////+x4BQAAAAF4AAAAAAAAAAAAAwkAAGYAAAACAAAAAAAAAAAABQAAAAF4AAAAAAAAABOIAwkAAGYAAAACAAAAAAAAABOIBQAAAAF4AAAAAAAAACUcAAAAAAAAACcQAQAAAApkb3RQcm9kdWN0AAAAAgAAAAJ2MQAAAAJ2MgQAAAAEc3VtMQkAAGkAAAACCQAAaAAAAAIJAAGRAAAAAgUAAAACdjEAAAAAAAAAAAAJAAGRAAAAAgUAAAACdjIAAAAAAAAAAAAAAAAAAAAAJxAEAAAABHN1bTIJAABpAAAAAgkAAGgAAAACCQABkQAAAAIFAAAAAnYxAAAAAAAAAAABCQABkQAAAAIFAAAAAnYyAAAAAAAAAAABAAAAAAAAACcQCQAAZAAAAAIFAAAABHN1bTEFAAAABHN1bTIBAAAAC2ZlZWRmb3J3YXJkAAAAAQAAAAZpbnB1dHMEAAAAA2RwMQkBAAAACmRvdFByb2R1Y3QAAAACBQAAAAZpbnB1dHMJAAGRAAAAAgUAAAANbGF5ZXIxV2VpZ2h0cwAAAAAAAAAAAAQAAAADZHAyCQEAAAAKZG90UHJvZHVjdAAAAAIFAAAABmlucHV0cwkAAZEAAAACBQAAAA1sYXllcjFXZWlnaHRzAAAAAAAAAAABBAAAAA1sYXllcjFSZXN1bHQxCQEAAAAOc2lnbW9pZF9hcHByb3gAAAABCQAAZAAAAAIFAAAAA2RwMQkAAZEAAAACBQAAAAxsYXllcjFCaWFzZXMAAAAAAAAAAAAEAAAADWxheWVyMVJlc3VsdDIJAQAAAA5zaWdtb2lkX2FwcHJveAAAAAEJAABkAAAAAgUAAAADZHAyCQABkQAAAAIFAAAADGxheWVyMUJpYXNlcwAAAAAAAAAAAQQAAAAMbGF5ZXIySW5wdXRzCQAETAAAAAIFAAAADWxheWVyMVJlc3VsdDEJAARMAAAAAgUAAAANbGF5ZXIxUmVzdWx0MgUAAAADbmlsBAAAAANkcDMJAQAAAApkb3RQcm9kdWN0AAAAAgUAAAAMbGF5ZXIySW5wdXRzCQABkQAAAAIFAAAADWxheWVyMldlaWdodHMAAAAAAAAAAAAEAAAABm91dHB1dAkBAAAADnNpZ21vaWRfYXBwcm94AAAAAQkAAGQAAAACBQAAAANkcDMJAAGRAAAAAgUAAAAMbGF5ZXIyQmlhc2VzAAAAAAAAAAAACQAFGAAAAAYFAAAABm91dHB1dAUAAAADZHAxBQAAAANkcDIFAAAADWxheWVyMVJlc3VsdDEFAAAADWxheWVyMVJlc3VsdDIFAAAAA2RwMwAAAAEAAAABaQEAAAAHcHJlZGljdAAAAAIAAAAGaW5wdXQxAAAABmlucHV0MgQAAAAGaW5wdXRzCQAETAAAAAIFAAAABmlucHV0MQkABEwAAAACBQAAAAZpbnB1dDIFAAAAA25pbAQAAAALJHQwMTQzNDE1MTcJAQAAAAtmZWVkZm9yd2FyZAAAAAEFAAAABmlucHV0cwQAAAAKcHJlZGljdGlvbggFAAAACyR0MDE0MzQxNTE3AAAAAl8xBAAAAANkcDEIBQAAAAskdDAxNDM0MTUxNwAAAAJfMgQAAAADZHAyCAUAAAALJHQwMTQzNDE1MTcAAAACXzMEAAAADWxheWVyMVJlc3VsdDEIBQAAAAskdDAxNDM0MTUxNwAAAAJfNAQAAAANbGF5ZXIxUmVzdWx0MggFAAAACyR0MDE0MzQxNTE3AAAAAl81BAAAAANkcDMIBQAAAAskdDAxNDM0MTUxNwAAAAJfNgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAAKcHJlZGljdGlvbgUAAAAKcHJlZGljdGlvbgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAALZG90UHJvZHVjdDEFAAAAA2RwMQkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAALZG90UHJvZHVjdDIFAAAAA2RwMgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAANbGF5ZXIxUmVzdWx0MQUAAAANbGF5ZXIxUmVzdWx0MQkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAANbGF5ZXIxUmVzdWx0MgUAAAANbGF5ZXIxUmVzdWx0MgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAALZG90UHJvZHVjdDMFAAAAA2RwMwUAAAADbmlsAAAAAL0zdOk=", "height": 3091161, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: CrFqEGY8DWvwsYq3yExJteW66i3hdNFg277CA3AXDGFm Next: BgJxwNe2CWQhu6e8YQTPKDw8KySzHCR28WNTUgBG6V1v Diff:
OldNewDifferences
3131
3232
3333 func feedforward (inputs) = {
34- let layer1Result1 = sigmoid_approx((dotProduct(inputs, layer1Weights[0]) + layer1Biases[0]))
35- let layer1Result2 = sigmoid_approx((dotProduct(inputs, layer1Weights[1]) + layer1Biases[1]))
34+ let dp1 = dotProduct(inputs, layer1Weights[0])
35+ let dp2 = dotProduct(inputs, layer1Weights[1])
36+ let layer1Result1 = sigmoid_approx((dp1 + layer1Biases[0]))
37+ let layer1Result2 = sigmoid_approx((dp2 + layer1Biases[1]))
3638 let layer2Inputs = [layer1Result1, layer1Result2]
37- sigmoid_approx((dotProduct(layer2Inputs, layer2Weights[0]) + layer2Biases[0]))
39+ let dp3 = dotProduct(layer2Inputs, layer2Weights[0])
40+ let output = sigmoid_approx((dp3 + layer2Biases[0]))
41+ $Tuple6(output, dp1, dp2, layer1Result1, layer1Result2, dp3)
3842 }
3943
4044
4145 @Callable(i)
4246 func predict (input1,input2) = {
4347 let inputs = [input1, input2]
44- let prediction = feedforward(inputs)
45-[IntegerEntry("prediction", prediction)]
48+ let $t014341517 = feedforward(inputs)
49+ let prediction = $t014341517._1
50+ let dp1 = $t014341517._2
51+ let dp2 = $t014341517._3
52+ let layer1Result1 = $t014341517._4
53+ let layer1Result2 = $t014341517._5
54+ let dp3 = $t014341517._6
55+[IntegerEntry("prediction", prediction), IntegerEntry("dotProduct1", dp1), IntegerEntry("dotProduct2", dp2), IntegerEntry("layer1Result1", layer1Result1), IntegerEntry("layer1Result2", layer1Result2), IntegerEntry("dotProduct3", dp3)]
4656 }
4757
4858
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
44 let layer1Weights = [[600496, 600733], [414197, 414253]]
55
66 let layer1Biases = [-259050, -635637]
77
88 let layer2Weights = [[832966, -897141]]
99
1010 let layer2Biases = [-381179]
1111
1212 func relu (x) = if ((x > 0))
1313 then x
1414 else 0
1515
1616
1717 func sigmoid_approx (x) = if ((-5000 > x))
1818 then 0
1919 else if ((0 > x))
2020 then 5000
2121 else if ((5000 > x))
2222 then 9500
2323 else 10000
2424
2525
2626 func dotProduct (v1,v2) = {
2727 let sum1 = ((v1[0] * v2[0]) / 10000)
2828 let sum2 = ((v1[1] * v2[1]) / 10000)
2929 (sum1 + sum2)
3030 }
3131
3232
3333 func feedforward (inputs) = {
34- let layer1Result1 = sigmoid_approx((dotProduct(inputs, layer1Weights[0]) + layer1Biases[0]))
35- let layer1Result2 = sigmoid_approx((dotProduct(inputs, layer1Weights[1]) + layer1Biases[1]))
34+ let dp1 = dotProduct(inputs, layer1Weights[0])
35+ let dp2 = dotProduct(inputs, layer1Weights[1])
36+ let layer1Result1 = sigmoid_approx((dp1 + layer1Biases[0]))
37+ let layer1Result2 = sigmoid_approx((dp2 + layer1Biases[1]))
3638 let layer2Inputs = [layer1Result1, layer1Result2]
37- sigmoid_approx((dotProduct(layer2Inputs, layer2Weights[0]) + layer2Biases[0]))
39+ let dp3 = dotProduct(layer2Inputs, layer2Weights[0])
40+ let output = sigmoid_approx((dp3 + layer2Biases[0]))
41+ $Tuple6(output, dp1, dp2, layer1Result1, layer1Result2, dp3)
3842 }
3943
4044
4145 @Callable(i)
4246 func predict (input1,input2) = {
4347 let inputs = [input1, input2]
44- let prediction = feedforward(inputs)
45-[IntegerEntry("prediction", prediction)]
48+ let $t014341517 = feedforward(inputs)
49+ let prediction = $t014341517._1
50+ let dp1 = $t014341517._2
51+ let dp2 = $t014341517._3
52+ let layer1Result1 = $t014341517._4
53+ let layer1Result2 = $t014341517._5
54+ let dp3 = $t014341517._6
55+[IntegerEntry("prediction", prediction), IntegerEntry("dotProduct1", dp1), IntegerEntry("dotProduct2", dp2), IntegerEntry("layer1Result1", layer1Result1), IntegerEntry("layer1Result2", layer1Result2), IntegerEntry("dotProduct3", dp3)]
4656 }
4757
4858

github/deemru/w8io/169f3d6 
23.05 ms