tx · CrFqEGY8DWvwsYq3yExJteW66i3hdNFg277CA3AXDGFm

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.05.04 11:41 [3091156] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "CrFqEGY8DWvwsYq3yExJteW66i3hdNFg277CA3AXDGFm", "fee": 1000000, "feeAssetId": null, "timestamp": 1714812142861, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "4vsrxw6zxrmHWGFf3ymbpdr2gD2nVUAYg8k9JBr2kmbJKg8fB4AjELMPV8w8Uu1dcyjmjkLdJpvyZSJytdd62ebj" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAgAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmwCQAETAAAAAIAAAAAAAAJKp0FAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLQUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwWCQAETAAAAAIA///////2TQsFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcYJAARMAAAAAgD///////JPiwUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAABHJlbHUAAAABAAAAAXgDCQAAZgAAAAIFAAAAAXgAAAAAAAAAAAAFAAAAAXgAAAAAAAAAAAABAAAADnNpZ21vaWRfYXBwcm94AAAAAQAAAAF4AwkAAGYAAAACAP///////+x4BQAAAAF4AAAAAAAAAAAAAwkAAGYAAAACAAAAAAAAAAAABQAAAAF4AAAAAAAAABOIAwkAAGYAAAACAAAAAAAAABOIBQAAAAF4AAAAAAAAACUcAAAAAAAAACcQAQAAAApkb3RQcm9kdWN0AAAAAgAAAAJ2MQAAAAJ2MgQAAAAEc3VtMQkAAGkAAAACCQAAaAAAAAIJAAGRAAAAAgUAAAACdjEAAAAAAAAAAAAJAAGRAAAAAgUAAAACdjIAAAAAAAAAAAAAAAAAAAAAJxAEAAAABHN1bTIJAABpAAAAAgkAAGgAAAACCQABkQAAAAIFAAAAAnYxAAAAAAAAAAABCQABkQAAAAIFAAAAAnYyAAAAAAAAAAABAAAAAAAAACcQCQAAZAAAAAIFAAAABHN1bTEFAAAABHN1bTIBAAAAC2ZlZWRmb3J3YXJkAAAAAQAAAAZpbnB1dHMEAAAADWxheWVyMVJlc3VsdDEJAQAAAA5zaWdtb2lkX2FwcHJveAAAAAEJAABkAAAAAgkBAAAACmRvdFByb2R1Y3QAAAACBQAAAAZpbnB1dHMJAAGRAAAAAgUAAAANbGF5ZXIxV2VpZ2h0cwAAAAAAAAAAAAkAAZEAAAACBQAAAAxsYXllcjFCaWFzZXMAAAAAAAAAAAAEAAAADWxheWVyMVJlc3VsdDIJAQAAAA5zaWdtb2lkX2FwcHJveAAAAAEJAABkAAAAAgkBAAAACmRvdFByb2R1Y3QAAAACBQAAAAZpbnB1dHMJAAGRAAAAAgUAAAANbGF5ZXIxV2VpZ2h0cwAAAAAAAAAAAQkAAZEAAAACBQAAAAxsYXllcjFCaWFzZXMAAAAAAAAAAAEEAAAADGxheWVyMklucHV0cwkABEwAAAACBQAAAA1sYXllcjFSZXN1bHQxCQAETAAAAAIFAAAADWxheWVyMVJlc3VsdDIFAAAAA25pbAkBAAAADnNpZ21vaWRfYXBwcm94AAAAAQkAAGQAAAACCQEAAAAKZG90UHJvZHVjdAAAAAIFAAAADGxheWVyMklucHV0cwkAAZEAAAACBQAAAA1sYXllcjJXZWlnaHRzAAAAAAAAAAAACQABkQAAAAIFAAAADGxheWVyMkJpYXNlcwAAAAAAAAAAAAAAAAEAAAABaQEAAAAHcHJlZGljdAAAAAIAAAAGaW5wdXQxAAAABmlucHV0MgQAAAAGaW5wdXRzCQAETAAAAAIFAAAABmlucHV0MQkABEwAAAACBQAAAAZpbnB1dDIFAAAAA25pbAQAAAAKcHJlZGljdGlvbgkBAAAAC2ZlZWRmb3J3YXJkAAAAAQUAAAAGaW5wdXRzCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACAgAAAApwcmVkaWN0aW9uBQAAAApwcmVkaWN0aW9uBQAAAANuaWwAAAAA1WWv/g==", "height": 3091156, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: 4Y5WL8dQqwHHtb9Ei4jYd9217YqLbJ62uGymgyngzKKK Next: HQYVbfLQm6q7Et1MgYX3SjNGapVKGrrmzK5duBWV2fLi Diff:
OldNewDifferences
1414 else 0
1515
1616
17+func sigmoid_approx (x) = if ((-5000 > x))
18+ then 0
19+ else if ((0 > x))
20+ then 5000
21+ else if ((5000 > x))
22+ then 9500
23+ else 10000
24+
25+
1726 func dotProduct (v1,v2) = {
1827 let sum1 = ((v1[0] * v2[0]) / 10000)
1928 let sum2 = ((v1[1] * v2[1]) / 10000)
2231
2332
2433 func feedforward (inputs) = {
25- let layer1Result1 = relu((dotProduct(inputs, layer1Weights[0]) + layer1Biases[0]))
26- let layer1Result2 = relu((dotProduct(inputs, layer1Weights[1]) + layer1Biases[1]))
34+ let layer1Result1 = sigmoid_approx((dotProduct(inputs, layer1Weights[0]) + layer1Biases[0]))
35+ let layer1Result2 = sigmoid_approx((dotProduct(inputs, layer1Weights[1]) + layer1Biases[1]))
2736 let layer2Inputs = [layer1Result1, layer1Result2]
28- (dotProduct(layer2Inputs, layer2Weights[0]) + layer2Biases[0])
37+ sigmoid_approx((dotProduct(layer2Inputs, layer2Weights[0]) + layer2Biases[0]))
2938 }
3039
3140
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
44 let layer1Weights = [[600496, 600733], [414197, 414253]]
55
66 let layer1Biases = [-259050, -635637]
77
88 let layer2Weights = [[832966, -897141]]
99
1010 let layer2Biases = [-381179]
1111
1212 func relu (x) = if ((x > 0))
1313 then x
1414 else 0
1515
1616
17+func sigmoid_approx (x) = if ((-5000 > x))
18+ then 0
19+ else if ((0 > x))
20+ then 5000
21+ else if ((5000 > x))
22+ then 9500
23+ else 10000
24+
25+
1726 func dotProduct (v1,v2) = {
1827 let sum1 = ((v1[0] * v2[0]) / 10000)
1928 let sum2 = ((v1[1] * v2[1]) / 10000)
2029 (sum1 + sum2)
2130 }
2231
2332
2433 func feedforward (inputs) = {
25- let layer1Result1 = relu((dotProduct(inputs, layer1Weights[0]) + layer1Biases[0]))
26- let layer1Result2 = relu((dotProduct(inputs, layer1Weights[1]) + layer1Biases[1]))
34+ let layer1Result1 = sigmoid_approx((dotProduct(inputs, layer1Weights[0]) + layer1Biases[0]))
35+ let layer1Result2 = sigmoid_approx((dotProduct(inputs, layer1Weights[1]) + layer1Biases[1]))
2736 let layer2Inputs = [layer1Result1, layer1Result2]
28- (dotProduct(layer2Inputs, layer2Weights[0]) + layer2Biases[0])
37+ sigmoid_approx((dotProduct(layer2Inputs, layer2Weights[0]) + layer2Biases[0]))
2938 }
3039
3140
3241 @Callable(i)
3342 func predict (input1,input2) = {
3443 let inputs = [input1, input2]
3544 let prediction = feedforward(inputs)
3645 [IntegerEntry("prediction", prediction)]
3746 }
3847
3948

github/deemru/w8io/169f3d6 
62.35 ms