tx · EUk6SP8KWsjHF1LQH8TKBsex2FAUFa7uDWqcmJfKSMsf 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY: -0.01000000 Waves 2024.04.28 13:45 [3082613] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves
{ "type": 13, "id": "EUk6SP8KWsjHF1LQH8TKBsex2FAUFa7uDWqcmJfKSMsf", "fee": 1000000, "feeAssetId": null, "timestamp": 1714301098429, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "nnZjsWb3NihpW1xecXmukJkZZb4ro4TZSTLxZBvLouQ5ushJkLYLrmZ9KZiexSmqQYVX15Z2pEBzGcXqkjdLUoW" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAkAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmxCQAETAAAAAIAAAAAAAAJKpwFAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLQUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwWCQAETAAAAAIA///////2TQsFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcYJAARMAAAAAgD///////JPigUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAABmNsYW1wWgAAAAIAAAABegAAAAVsaW1pdAMJAABmAAAAAgUAAAABegUAAAAFbGltaXQFAAAABWxpbWl0AwkAAGYAAAACCQEAAAABLQAAAAEFAAAABWxpbWl0BQAAAAF6CQEAAAABLQAAAAEFAAAABWxpbWl0BQAAAAF6AQAAAApleHBfYXBwcm94AAAAAQAAAAF4BAAAAAhzY2FsZWRfeAkAAGkAAAACBQAAAAF4AAAAAAAAACcQBAAAAAlzY2FsZWRfeDIJAABrAAAAAwUAAAAIc2NhbGVkX3gFAAAACHNjYWxlZF94AAAAAAAAAAABBAAAAAlzY2FsZWRfeDMJAABrAAAAAwUAAAAJc2NhbGVkX3gyBQAAAAhzY2FsZWRfeAAAAAAAAAAAAQQAAAAKZXhwX3Jlc3VsdAkAAGUAAAACCQAAZAAAAAIJAABlAAAAAgAAAAAAAA9CQAUAAAAIc2NhbGVkX3gJAQAAAAhmcmFjdGlvbgAAAAQFAAAACXNjYWxlZF94MgAAAAAAAAehIAAAAAAAAAAAAQUAAAAERE9XTgkBAAAACGZyYWN0aW9uAAAABAUAAAAJc2NhbGVkX3gzAAAAAAAAW42AAAAAAAAAAAABBQAAAARET1dOAwkAAGYAAAACAAAAAAAAAAAABQAAAAF4CQAAZAAAAAIAAAAAAAAPQkAFAAAACmV4cF9yZXN1bHQJAABlAAAAAgAAAAAAAA9CQAUAAAAKZXhwX3Jlc3VsdAEAAAAHc2lnbW9pZAAAAAIAAAABegAAAAtkZWJ1Z1ByZWZpeAQAAAAIY2xhbXBlZFoJAQAAAAZjbGFtcFoAAAACBQAAAAF6AAAAAAAAAYagBAAAAAlwb3NpdGl2ZVoDCQAAZgAAAAIAAAAAAAAAAAAFAAAAAXoJAQAAAAEtAAAAAQUAAAABegUAAAABegQAAAAIZXhwVmFsdWUJAQAAAApleHBfYXBwcm94AAAAAQkBAAAAAS0AAAABBQAAAAlwb3NpdGl2ZVoEAAAACHNpZ1ZhbHVlCQAAawAAAAMAAAAAAAAPQkAJAABkAAAAAgAAAAAAAA9CQAUAAAAIZXhwVmFsdWUAAAAAAAAAAAEJAAUUAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgkAASwAAAACBQAAAAtkZWJ1Z1ByZWZpeAIAAAAGaW5wdXRaBQAAAAF6CQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAhjbGFtcGVkWgUAAAAIY2xhbXBlZFoJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACXBvc2l0aXZlWgUAAAAJcG9zaXRpdmVaCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAhleHBWYWx1ZQUAAAAIZXhwVmFsdWUJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACHNpZ1ZhbHVlBQAAAAhzaWdWYWx1ZQUAAAADbmlsBQAAAAhzaWdWYWx1ZQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEAAAABWlucHV0AAAAB3dlaWdodHMAAAAGYmlhc2VzAAAAC2RlYnVnUHJlZml4BAAAAARzdW0wCQAAZAAAAAIJAABkAAAAAgkAAGgAAAACCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAAkAAGgAAAACCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAAAAAAAAAAAAAQkAAGgAAAACCQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAAAAAAAAAAGGoAQAAAAEc3VtMQkAAGQAAAACCQAAZAAAAAIJAABoAAAAAgkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAEAAAAAAAAAAAAJAABoAAAAAgkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAEAAAAAAAAAAAEJAABoAAAAAgkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAEAAAAAAAABhqAEAAAACyR0MDE5ODAyMDMzCQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTACAAAACExheWVyMU4wBAAAAA1kZWJ1Z0VudHJpZXMwCAUAAAALJHQwMTk4MDIwMzMAAAACXzEEAAAABHNpZzAIBQAAAAskdDAxOTgwMjAzMwAAAAJfMgQAAAALJHQwMjAzODIwOTEJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMQIAAAAITGF5ZXIxTjEEAAAADWRlYnVnRW50cmllczEIBQAAAAskdDAyMDM4MjA5MQAAAAJfMQQAAAAEc2lnMQgFAAAACyR0MDIwMzgyMDkxAAAAAl8yBAAAAAlkZWJ1Z0luZm8JAAROAAAAAgUAAAANZGVidWdFbnRyaWVzMAUAAAANZGVidWdFbnRyaWVzMQQAAAAGb3V0cHV0CQAETAAAAAIFAAAABHNpZzAJAARMAAAAAgUAAAAEc2lnMQUAAAADbmlsCQAFFAAAAAIFAAAACWRlYnVnSW5mbwUAAAAGb3V0cHV0AQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQAAAAFaW5wdXQAAAAHd2VpZ2h0cwAAAAZiaWFzZXMAAAALZGVidWdQcmVmaXgEAAAABHN1bTAJAABkAAAAAgkAAGQAAAACCQAAaAAAAAIJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAAACQAAaAAAAAIJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAABCQAAaAAAAAIJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAAAAAAAAAAAYagBAAAAAskdDAyNDAxMjQ1NAkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0wAgAAAAhMYXllcjJOMAQAAAANZGVidWdFbnRyaWVzMAgFAAAACyR0MDI0MDEyNDU0AAAAAl8xBAAAAARzaWcwCAUAAAALJHQwMjQwMTI0NTQAAAACXzIEAAAACWRlYnVnSW5mbwUAAAANZGVidWdFbnRyaWVzMAQAAAAGb3V0cHV0BQAAAARzaWcwCQAFFAAAAAIFAAAACWRlYnVnSW5mbwUAAAAGb3V0cHV0AAAAAQAAAAFpAQAAAAdwcmVkaWN0AAAAAgAAAAZpbnB1dDEAAAAGaW5wdXQyBAAAAAxzY2FsZWRJbnB1dDEDCQAAAAAAAAIFAAAABmlucHV0MQAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAAMc2NhbGVkSW5wdXQyAwkAAAAAAAACBQAAAAZpbnB1dDIAAAAAAAAAAAEAAAAAAAAPQkAAAAAAAAAAAAAEAAAABmlucHV0cwkABEwAAAACBQAAAAxzY2FsZWRJbnB1dDEJAARMAAAAAgUAAAAMc2NhbGVkSW5wdXQyBQAAAANuaWwEAAAACyR0MDI3NjYyODY0CQEAAAARZm9yd2FyZFBhc3NMYXllcjEAAAAEBQAAAAZpbnB1dHMFAAAADWxheWVyMVdlaWdodHMFAAAADGxheWVyMUJpYXNlcwIAAAAGTGF5ZXIxBAAAAAtkZWJ1Z0xheWVyMQgFAAAACyR0MDI3NjYyODY0AAAAAl8xBAAAAAxsYXllcjFPdXRwdXQIBQAAAAskdDAyNzY2Mjg2NAAAAAJfMgQAAAALJHQwMjg2OTI5NzMJAQAAABFmb3J3YXJkUGFzc0xheWVyMgAAAAQFAAAADGxheWVyMU91dHB1dAUAAAANbGF5ZXIyV2VpZ2h0cwUAAAAMbGF5ZXIyQmlhc2VzAgAAAAZMYXllcjIEAAAAC2RlYnVnTGF5ZXIyCAUAAAALJHQwMjg2OTI5NzMAAAACXzEEAAAADGxheWVyMk91dHB1dAgFAAAACyR0MDI4NjkyOTczAAAAAl8yCQAETgAAAAIJAAROAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAAGcmVzdWx0BQAAAAxsYXllcjJPdXRwdXQFAAAAA25pbAUAAAALZGVidWdMYXllcjEFAAAAC2RlYnVnTGF5ZXIyAAAAAFCIlZ0=", "height": 3082613, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: Yxm27VmnSiXh83CHjo1DgvTCSkak33fbPnBnSF6qgCS Next: BQxK6Q9RxFkuvKPme7hUqZ728mZQD9T4F4MFJRiKaPvb Diff:
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let layer1Weights = [[600497, | |
4 | + | let layer1Weights = [[600497, 600732], [414197, 414253]] | |
5 | 5 | ||
6 | 6 | let layer1Biases = [-259050, -635637] | |
7 | 7 | ||
8 | - | let layer2Weights = [[ | |
8 | + | let layer2Weights = [[832966, -897142]] | |
9 | 9 | ||
10 | 10 | let layer2Biases = [-381179] | |
11 | 11 | ||
17 | 17 | ||
18 | 18 | ||
19 | 19 | func exp_approx (x) = { | |
20 | - | let | |
21 | - | let | |
22 | - | | |
23 | - | | |
24 | - | | |
25 | - | ||
26 | - | ||
20 | + | let scaled_x = (x / 10000) | |
21 | + | let scaled_x2 = fraction(scaled_x, scaled_x, 1) | |
22 | + | let scaled_x3 = fraction(scaled_x2, scaled_x, 1) | |
23 | + | let exp_result = (((1000000 - scaled_x) + fraction(scaled_x2, 500000, 1, DOWN)) - fraction(scaled_x3, 6000000, 1, DOWN)) | |
24 | + | if ((0 > x)) | |
25 | + | then (1000000 + exp_result) | |
26 | + | else (1000000 - exp_result) | |
27 | 27 | } | |
28 | 28 | ||
29 | 29 | ||
33 | 33 | then -(z) | |
34 | 34 | else z | |
35 | 35 | let expValue = exp_approx(-(positiveZ)) | |
36 | - | let sigValue = (1000000 | |
37 | - | $Tuple2([IntegerEntry((debugPrefix + "clampedZ"), clampedZ), IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
36 | + | let sigValue = fraction(1000000, (1000000 + expValue), 1) | |
37 | + | $Tuple2([IntegerEntry((debugPrefix + "inputZ"), z), IntegerEntry((debugPrefix + "clampedZ"), clampedZ), IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
38 | 38 | } | |
39 | 39 | ||
40 | 40 | ||
41 | 41 | func forwardPassLayer1 (input,weights,biases,debugPrefix) = { | |
42 | 42 | let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000)) | |
43 | 43 | let sum1 = (((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (biases[1] * 100000)) | |
44 | - | let $ | |
45 | - | let debugEntries0 = $ | |
46 | - | let sig0 = $ | |
47 | - | let $ | |
48 | - | let debugEntries1 = $ | |
49 | - | let sig1 = $ | |
44 | + | let $t019802033 = sigmoid(sum0, "Layer1N0") | |
45 | + | let debugEntries0 = $t019802033._1 | |
46 | + | let sig0 = $t019802033._2 | |
47 | + | let $t020382091 = sigmoid(sum1, "Layer1N1") | |
48 | + | let debugEntries1 = $t020382091._1 | |
49 | + | let sig1 = $t020382091._2 | |
50 | 50 | let debugInfo = (debugEntries0 ++ debugEntries1) | |
51 | 51 | let output = [sig0, sig1] | |
52 | 52 | $Tuple2(debugInfo, output) | |
55 | 55 | ||
56 | 56 | func forwardPassLayer2 (input,weights,biases,debugPrefix) = { | |
57 | 57 | let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000)) | |
58 | - | let $ | |
59 | - | let debugEntries0 = $ | |
60 | - | let sig0 = $ | |
58 | + | let $t024012454 = sigmoid(sum0, "Layer2N0") | |
59 | + | let debugEntries0 = $t024012454._1 | |
60 | + | let sig0 = $t024012454._2 | |
61 | 61 | let debugInfo = debugEntries0 | |
62 | 62 | let output = sig0 | |
63 | 63 | $Tuple2(debugInfo, output) | |
73 | 73 | then 1000000 | |
74 | 74 | else 0 | |
75 | 75 | let inputs = [scaledInput1, scaledInput2] | |
76 | - | let $ | |
77 | - | let debugLayer1 = $ | |
78 | - | let layer1Output = $ | |
79 | - | let $ | |
80 | - | let debugLayer2 = $ | |
81 | - | let layer2Output = $ | |
76 | + | let $t027662864 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
77 | + | let debugLayer1 = $t027662864._1 | |
78 | + | let layer1Output = $t027662864._2 | |
79 | + | let $t028692973 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
80 | + | let debugLayer2 = $t028692973._1 | |
81 | + | let layer2Output = $t028692973._2 | |
82 | 82 | (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2) | |
83 | 83 | } | |
84 | 84 |
Old | New | Differences | |
---|---|---|---|
1 | 1 | {-# STDLIB_VERSION 5 #-} | |
2 | 2 | {-# SCRIPT_TYPE ACCOUNT #-} | |
3 | 3 | {-# CONTENT_TYPE DAPP #-} | |
4 | - | let layer1Weights = [[600497, | |
4 | + | let layer1Weights = [[600497, 600732], [414197, 414253]] | |
5 | 5 | ||
6 | 6 | let layer1Biases = [-259050, -635637] | |
7 | 7 | ||
8 | - | let layer2Weights = [[ | |
8 | + | let layer2Weights = [[832966, -897142]] | |
9 | 9 | ||
10 | 10 | let layer2Biases = [-381179] | |
11 | 11 | ||
12 | 12 | func clampZ (z,limit) = if ((z > limit)) | |
13 | 13 | then limit | |
14 | 14 | else if ((-(limit) > z)) | |
15 | 15 | then -(limit) | |
16 | 16 | else z | |
17 | 17 | ||
18 | 18 | ||
19 | 19 | func exp_approx (x) = { | |
20 | - | let | |
21 | - | let | |
22 | - | | |
23 | - | | |
24 | - | | |
25 | - | ||
26 | - | ||
20 | + | let scaled_x = (x / 10000) | |
21 | + | let scaled_x2 = fraction(scaled_x, scaled_x, 1) | |
22 | + | let scaled_x3 = fraction(scaled_x2, scaled_x, 1) | |
23 | + | let exp_result = (((1000000 - scaled_x) + fraction(scaled_x2, 500000, 1, DOWN)) - fraction(scaled_x3, 6000000, 1, DOWN)) | |
24 | + | if ((0 > x)) | |
25 | + | then (1000000 + exp_result) | |
26 | + | else (1000000 - exp_result) | |
27 | 27 | } | |
28 | 28 | ||
29 | 29 | ||
30 | 30 | func sigmoid (z,debugPrefix) = { | |
31 | 31 | let clampedZ = clampZ(z, 100000) | |
32 | 32 | let positiveZ = if ((0 > z)) | |
33 | 33 | then -(z) | |
34 | 34 | else z | |
35 | 35 | let expValue = exp_approx(-(positiveZ)) | |
36 | - | let sigValue = (1000000 | |
37 | - | $Tuple2([IntegerEntry((debugPrefix + "clampedZ"), clampedZ), IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
36 | + | let sigValue = fraction(1000000, (1000000 + expValue), 1) | |
37 | + | $Tuple2([IntegerEntry((debugPrefix + "inputZ"), z), IntegerEntry((debugPrefix + "clampedZ"), clampedZ), IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue) | |
38 | 38 | } | |
39 | 39 | ||
40 | 40 | ||
41 | 41 | func forwardPassLayer1 (input,weights,biases,debugPrefix) = { | |
42 | 42 | let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000)) | |
43 | 43 | let sum1 = (((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (biases[1] * 100000)) | |
44 | - | let $ | |
45 | - | let debugEntries0 = $ | |
46 | - | let sig0 = $ | |
47 | - | let $ | |
48 | - | let debugEntries1 = $ | |
49 | - | let sig1 = $ | |
44 | + | let $t019802033 = sigmoid(sum0, "Layer1N0") | |
45 | + | let debugEntries0 = $t019802033._1 | |
46 | + | let sig0 = $t019802033._2 | |
47 | + | let $t020382091 = sigmoid(sum1, "Layer1N1") | |
48 | + | let debugEntries1 = $t020382091._1 | |
49 | + | let sig1 = $t020382091._2 | |
50 | 50 | let debugInfo = (debugEntries0 ++ debugEntries1) | |
51 | 51 | let output = [sig0, sig1] | |
52 | 52 | $Tuple2(debugInfo, output) | |
53 | 53 | } | |
54 | 54 | ||
55 | 55 | ||
56 | 56 | func forwardPassLayer2 (input,weights,biases,debugPrefix) = { | |
57 | 57 | let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000)) | |
58 | - | let $ | |
59 | - | let debugEntries0 = $ | |
60 | - | let sig0 = $ | |
58 | + | let $t024012454 = sigmoid(sum0, "Layer2N0") | |
59 | + | let debugEntries0 = $t024012454._1 | |
60 | + | let sig0 = $t024012454._2 | |
61 | 61 | let debugInfo = debugEntries0 | |
62 | 62 | let output = sig0 | |
63 | 63 | $Tuple2(debugInfo, output) | |
64 | 64 | } | |
65 | 65 | ||
66 | 66 | ||
67 | 67 | @Callable(i) | |
68 | 68 | func predict (input1,input2) = { | |
69 | 69 | let scaledInput1 = if ((input1 == 1)) | |
70 | 70 | then 1000000 | |
71 | 71 | else 0 | |
72 | 72 | let scaledInput2 = if ((input2 == 1)) | |
73 | 73 | then 1000000 | |
74 | 74 | else 0 | |
75 | 75 | let inputs = [scaledInput1, scaledInput2] | |
76 | - | let $ | |
77 | - | let debugLayer1 = $ | |
78 | - | let layer1Output = $ | |
79 | - | let $ | |
80 | - | let debugLayer2 = $ | |
81 | - | let layer2Output = $ | |
76 | + | let $t027662864 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1") | |
77 | + | let debugLayer1 = $t027662864._1 | |
78 | + | let layer1Output = $t027662864._2 | |
79 | + | let $t028692973 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2") | |
80 | + | let debugLayer2 = $t028692973._1 | |
81 | + | let layer2Output = $t028692973._2 | |
82 | 82 | (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2) | |
83 | 83 | } | |
84 | 84 | ||
85 | 85 |
github/deemru/w8io/169f3d6 33.91 ms ◑