tx · 6zJ8QRcPZvRhEXXc7Bhy38mZu4RMyVgBXbvcTVw8gMMR

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.04.28 13:14 [3082576] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "6zJ8QRcPZvRhEXXc7Bhy38mZu4RMyVgBXbvcTVw8gMMR", "fee": 1000000, "feeAssetId": null, "timestamp": 1714299254677, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "49dYRZjTq5Cc5H1eUmvwxtLoCZqxupCxbEKuLqtc6qvNDyPGPw5TEUYhBbXGmPeC9SLtxU7fDwT7BvCqb8DhboE7" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAkAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAACSmxCQAETAAAAAIAAAAAAAAJKpwFAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAAAGUfUJAARMAAAAAgAAAAAAAAZSLQUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP///////AwVCQAETAAAAAIA///////2TQoFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAAMtcYJAARMAAAAAgD///////JPigUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAP//////+i8FBQAAAANuaWwBAAAABmNsYW1wWgAAAAIAAAABegAAAAVsaW1pdAMJAABmAAAAAgUAAAABegUAAAAFbGltaXQFAAAABWxpbWl0AwkAAGYAAAACCQEAAAABLQAAAAEFAAAABWxpbWl0BQAAAAF6CQEAAAABLQAAAAEFAAAABWxpbWl0BQAAAAF6AQAAAApleHBfYXBwcm94AAAAAQAAAAF4BAAAAARiYXNlAAAAAAAAD0JABAAAAAdzY2FsZWRYCQAAaQAAAAIFAAAAAXgAAAAAAAAAJxADCQAAZgAAAAIAAAAAAAAAAAAFAAAAAXgJAABpAAAAAgUAAAAEYmFzZQkAAGQAAAACAAAAAAAAAAABCQAAaAAAAAIFAAAABGJhc2UJAQAAAAEtAAAAAQUAAAAHc2NhbGVkWAkAAGQAAAACAAAAAAAAAAABCQAAaAAAAAIFAAAABGJhc2UFAAAAB3NjYWxlZFgBAAAAB3NpZ21vaWQAAAACAAAAAXoAAAALZGVidWdQcmVmaXgEAAAACGNsYW1wZWRaCQEAAAAGY2xhbXBaAAAAAgUAAAABegAAAAAAAAGGoAQAAAAJcG9zaXRpdmVaAwkAAGYAAAACAAAAAAAAAAAABQAAAAF6CQEAAAABLQAAAAEFAAAAAXoFAAAAAXoEAAAACGV4cFZhbHVlCQEAAAAKZXhwX2FwcHJveAAAAAEJAQAAAAEtAAAAAQUAAAAJcG9zaXRpdmVaBAAAAAhzaWdWYWx1ZQkAAGkAAAACAAAAAAAAD0JACQAAZAAAAAIAAAAAAAAPQkAFAAAACGV4cFZhbHVlCQAFFAAAAAIJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACGNsYW1wZWRaBQAAAAhjbGFtcGVkWgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgkAASwAAAACBQAAAAtkZWJ1Z1ByZWZpeAIAAAAJcG9zaXRpdmVaBQAAAAlwb3NpdGl2ZVoJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACGV4cFZhbHVlBQAAAAhleHBWYWx1ZQkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgkAASwAAAACBQAAAAtkZWJ1Z1ByZWZpeAIAAAAIc2lnVmFsdWUFAAAACHNpZ1ZhbHVlBQAAAANuaWwFAAAACHNpZ1ZhbHVlAQAAABFmb3J3YXJkUGFzc0xheWVyMQAAAAQAAAAFaW5wdXQAAAAHd2VpZ2h0cwAAAAZiaWFzZXMAAAALZGVidWdQcmVmaXgEAAAABHN1bTAJAABkAAAAAgkAAGQAAAACCQAAaAAAAAIJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAAJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAAACQAAaAAAAAIJAAGRAAAAAgUAAAAFaW5wdXQAAAAAAAAAAAEJAAGRAAAAAgkAAZEAAAACBQAAAAd3ZWlnaHRzAAAAAAAAAAAAAAAAAAAAAAABCQAAaAAAAAIJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAAAAAAAAAAAYagBAAAAARzdW0xCQAAZAAAAAIJAABkAAAAAgkAAGgAAAACCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAAACQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQAAAAAAAAAAAAkAAGgAAAACCQABkQAAAAIFAAAABWlucHV0AAAAAAAAAAABCQABkQAAAAIJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQAAAAAAAAAAAQkAAGgAAAACCQABkQAAAAIFAAAABmJpYXNlcwAAAAAAAAAAAQAAAAAAAAGGoAQAAAALJHQwMTUyNjE1NzkJAQAAAAdzaWdtb2lkAAAAAgUAAAAEc3VtMAIAAAAITGF5ZXIxTjAEAAAADWRlYnVnRW50cmllczAIBQAAAAskdDAxNTI2MTU3OQAAAAJfMQQAAAAEc2lnMAgFAAAACyR0MDE1MjYxNTc5AAAAAl8yBAAAAAskdDAxNTg0MTYzNwkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0xAgAAAAhMYXllcjFOMQQAAAANZGVidWdFbnRyaWVzMQgFAAAACyR0MDE1ODQxNjM3AAAAAl8xBAAAAARzaWcxCAUAAAALJHQwMTU4NDE2MzcAAAACXzIEAAAACWRlYnVnSW5mbwkABE4AAAACBQAAAA1kZWJ1Z0VudHJpZXMwBQAAAA1kZWJ1Z0VudHJpZXMxBAAAAAZvdXRwdXQJAARMAAAAAgUAAAAEc2lnMAkABEwAAAACBQAAAARzaWcxBQAAAANuaWwJAAUUAAAAAgUAAAAJZGVidWdJbmZvBQAAAAZvdXRwdXQBAAAAEWZvcndhcmRQYXNzTGF5ZXIyAAAABAAAAAVpbnB1dAAAAAd3ZWlnaHRzAAAABmJpYXNlcwAAAAtkZWJ1Z1ByZWZpeAQAAAAEc3VtMAkAAGQAAAACCQAAZAAAAAIJAABoAAAAAgkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAAkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAAJAABoAAAAAgkAAZEAAAACBQAAAAVpbnB1dAAAAAAAAAAAAQkAAZEAAAACCQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAAAAAAAAAAAAEJAABoAAAAAgkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAAAAAAAAAABhqAEAAAACyR0MDE5NDcyMDAwCQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTACAAAACExheWVyMk4wBAAAAA1kZWJ1Z0VudHJpZXMwCAUAAAALJHQwMTk0NzIwMDAAAAACXzEEAAAABHNpZzAIBQAAAAskdDAxOTQ3MjAwMAAAAAJfMgQAAAAJZGVidWdJbmZvBQAAAA1kZWJ1Z0VudHJpZXMwBAAAAAZvdXRwdXQFAAAABHNpZzAJAAUUAAAAAgUAAAAJZGVidWdJbmZvBQAAAAZvdXRwdXQAAAABAAAAAWkBAAAAB3ByZWRpY3QAAAACAAAABmlucHV0MQAAAAZpbnB1dDIEAAAADHNjYWxlZElucHV0MQMJAAAAAAAAAgUAAAAGaW5wdXQxAAAAAAAAAAABAAAAAAAAD0JAAAAAAAAAAAAABAAAAAxzY2FsZWRJbnB1dDIDCQAAAAAAAAIFAAAABmlucHV0MgAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAAGaW5wdXRzCQAETAAAAAIFAAAADHNjYWxlZElucHV0MQkABEwAAAACBQAAAAxzY2FsZWRJbnB1dDIFAAAAA25pbAQAAAALJHQwMjMxMjI0MTAJAQAAABFmb3J3YXJkUGFzc0xheWVyMQAAAAQFAAAABmlucHV0cwUAAAANbGF5ZXIxV2VpZ2h0cwUAAAAMbGF5ZXIxQmlhc2VzAgAAAAZMYXllcjEEAAAAC2RlYnVnTGF5ZXIxCAUAAAALJHQwMjMxMjI0MTAAAAACXzEEAAAADGxheWVyMU91dHB1dAgFAAAACyR0MDIzMTIyNDEwAAAAAl8yBAAAAAskdDAyNDE1MjUxOQkBAAAAEWZvcndhcmRQYXNzTGF5ZXIyAAAABAUAAAAMbGF5ZXIxT3V0cHV0BQAAAA1sYXllcjJXZWlnaHRzBQAAAAxsYXllcjJCaWFzZXMCAAAABkxheWVyMgQAAAALZGVidWdMYXllcjIIBQAAAAskdDAyNDE1MjUxOQAAAAJfMQQAAAAMbGF5ZXIyT3V0cHV0CAUAAAALJHQwMjQxNTI1MTkAAAACXzIJAAROAAAAAgkABE4AAAACCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACAgAAAAZyZXN1bHQFAAAADGxheWVyMk91dHB1dAUAAAADbmlsBQAAAAtkZWJ1Z0xheWVyMQUAAAALZGVidWdMYXllcjIAAAAAwW9Mew==", "height": 3082576, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: 7s1h3jYoYnAwi8pPGmy5HUUL4Ybuoz6K6kVB7GwRyRrV Next: Yxm27VmnSiXh83CHjo1DgvTCSkak33fbPnBnSF6qgCS Diff:
OldNewDifferences
33 {-# CONTENT_TYPE DAPP #-}
44 let layer1Weights = [[600497, 600732], [414197, 414253]]
55
6-let layer1Biases = [-259050, -635637]
6+let layer1Biases = [-259051, -635638]
77
8-let layer2Weights = [[832965, -897142]]
8+let layer2Weights = [[832966, -897142]]
99
1010 let layer2Biases = [-381179]
1111
12+func clampZ (z,limit) = if ((z > limit))
13+ then limit
14+ else if ((-(limit) > z))
15+ then -(limit)
16+ else z
17+
18+
19+func exp_approx (x) = {
20+ let base = 1000000
21+ let scaledX = (x / 10000)
22+ if ((0 > x))
23+ then (base / (1 + (base * -(scaledX))))
24+ else (1 + (base * scaledX))
25+ }
26+
27+
1228 func sigmoid (z,debugPrefix) = {
13- let e = 2718281
14- let base = 1000000
15- let scaledZ = (z / 10000)
16- let expPart = fraction(e, base, -(scaledZ))
17- let sigValue = fraction(base, (base + expPart), base)
18- $Tuple2([IntegerEntry((debugPrefix + "z"), z), IntegerEntry((debugPrefix + "expPart"), expPart), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
29+ let clampedZ = clampZ(z, 100000)
30+ let positiveZ = if ((0 > z))
31+ then -(z)
32+ else z
33+ let expValue = exp_approx(-(positiveZ))
34+ let sigValue = (1000000 / (1000000 + expValue))
35+ $Tuple2([IntegerEntry((debugPrefix + "clampedZ"), clampedZ), IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
1936 }
2037
2138
2239 func forwardPassLayer1 (input,weights,biases,debugPrefix) = {
2340 let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
2441 let sum1 = (((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (biases[1] * 100000))
25- let $t010611114 = sigmoid(sum0, "Layer1N0")
26- let debugEntries0 = $t010611114._1
27- let sig0 = $t010611114._2
28- let $t011191172 = sigmoid(sum1, "Layer1N1")
29- let debugEntries1 = $t011191172._1
30- let sig1 = $t011191172._2
42+ let $t015261579 = sigmoid(sum0, "Layer1N0")
43+ let debugEntries0 = $t015261579._1
44+ let sig0 = $t015261579._2
45+ let $t015841637 = sigmoid(sum1, "Layer1N1")
46+ let debugEntries1 = $t015841637._1
47+ let sig1 = $t015841637._2
3148 let debugInfo = (debugEntries0 ++ debugEntries1)
3249 let output = [sig0, sig1]
3350 $Tuple2(debugInfo, output)
3653
3754 func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
3855 let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
39- let $t014821535 = sigmoid(sum0, "Layer2N0")
40- let debugEntries0 = $t014821535._1
41- let sig0 = $t014821535._2
56+ let $t019472000 = sigmoid(sum0, "Layer2N0")
57+ let debugEntries0 = $t019472000._1
58+ let sig0 = $t019472000._2
4259 let debugInfo = debugEntries0
4360 let output = sig0
4461 $Tuple2(debugInfo, output)
5471 then 1000000
5572 else 0
5673 let inputs = [scaledInput1, scaledInput2]
57- let $t018471945 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
58- let debugLayer1 = $t018471945._1
59- let layer1Output = $t018471945._2
60- let $t019502054 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
61- let debugLayer2 = $t019502054._1
62- let layer2Output = $t019502054._2
74+ let $t023122410 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
75+ let debugLayer1 = $t023122410._1
76+ let layer1Output = $t023122410._2
77+ let $t024152519 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
78+ let debugLayer2 = $t024152519._1
79+ let layer2Output = $t024152519._2
6380 (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2)
6481 }
6582
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
44 let layer1Weights = [[600497, 600732], [414197, 414253]]
55
6-let layer1Biases = [-259050, -635637]
6+let layer1Biases = [-259051, -635638]
77
8-let layer2Weights = [[832965, -897142]]
8+let layer2Weights = [[832966, -897142]]
99
1010 let layer2Biases = [-381179]
1111
12+func clampZ (z,limit) = if ((z > limit))
13+ then limit
14+ else if ((-(limit) > z))
15+ then -(limit)
16+ else z
17+
18+
19+func exp_approx (x) = {
20+ let base = 1000000
21+ let scaledX = (x / 10000)
22+ if ((0 > x))
23+ then (base / (1 + (base * -(scaledX))))
24+ else (1 + (base * scaledX))
25+ }
26+
27+
1228 func sigmoid (z,debugPrefix) = {
13- let e = 2718281
14- let base = 1000000
15- let scaledZ = (z / 10000)
16- let expPart = fraction(e, base, -(scaledZ))
17- let sigValue = fraction(base, (base + expPart), base)
18- $Tuple2([IntegerEntry((debugPrefix + "z"), z), IntegerEntry((debugPrefix + "expPart"), expPart), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
29+ let clampedZ = clampZ(z, 100000)
30+ let positiveZ = if ((0 > z))
31+ then -(z)
32+ else z
33+ let expValue = exp_approx(-(positiveZ))
34+ let sigValue = (1000000 / (1000000 + expValue))
35+ $Tuple2([IntegerEntry((debugPrefix + "clampedZ"), clampedZ), IntegerEntry((debugPrefix + "positiveZ"), positiveZ), IntegerEntry((debugPrefix + "expValue"), expValue), IntegerEntry((debugPrefix + "sigValue"), sigValue)], sigValue)
1936 }
2037
2138
2239 func forwardPassLayer1 (input,weights,biases,debugPrefix) = {
2340 let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
2441 let sum1 = (((input[0] * weights[1][0]) + (input[1] * weights[1][1])) + (biases[1] * 100000))
25- let $t010611114 = sigmoid(sum0, "Layer1N0")
26- let debugEntries0 = $t010611114._1
27- let sig0 = $t010611114._2
28- let $t011191172 = sigmoid(sum1, "Layer1N1")
29- let debugEntries1 = $t011191172._1
30- let sig1 = $t011191172._2
42+ let $t015261579 = sigmoid(sum0, "Layer1N0")
43+ let debugEntries0 = $t015261579._1
44+ let sig0 = $t015261579._2
45+ let $t015841637 = sigmoid(sum1, "Layer1N1")
46+ let debugEntries1 = $t015841637._1
47+ let sig1 = $t015841637._2
3148 let debugInfo = (debugEntries0 ++ debugEntries1)
3249 let output = [sig0, sig1]
3350 $Tuple2(debugInfo, output)
3451 }
3552
3653
3754 func forwardPassLayer2 (input,weights,biases,debugPrefix) = {
3855 let sum0 = (((input[0] * weights[0][0]) + (input[1] * weights[0][1])) + (biases[0] * 100000))
39- let $t014821535 = sigmoid(sum0, "Layer2N0")
40- let debugEntries0 = $t014821535._1
41- let sig0 = $t014821535._2
56+ let $t019472000 = sigmoid(sum0, "Layer2N0")
57+ let debugEntries0 = $t019472000._1
58+ let sig0 = $t019472000._2
4259 let debugInfo = debugEntries0
4360 let output = sig0
4461 $Tuple2(debugInfo, output)
4562 }
4663
4764
4865 @Callable(i)
4966 func predict (input1,input2) = {
5067 let scaledInput1 = if ((input1 == 1))
5168 then 1000000
5269 else 0
5370 let scaledInput2 = if ((input2 == 1))
5471 then 1000000
5572 else 0
5673 let inputs = [scaledInput1, scaledInput2]
57- let $t018471945 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
58- let debugLayer1 = $t018471945._1
59- let layer1Output = $t018471945._2
60- let $t019502054 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
61- let debugLayer2 = $t019502054._1
62- let layer2Output = $t019502054._2
74+ let $t023122410 = forwardPassLayer1(inputs, layer1Weights, layer1Biases, "Layer1")
75+ let debugLayer1 = $t023122410._1
76+ let layer1Output = $t023122410._2
77+ let $t024152519 = forwardPassLayer2(layer1Output, layer2Weights, layer2Biases, "Layer2")
78+ let debugLayer2 = $t024152519._1
79+ let layer2Output = $t024152519._2
6380 (([IntegerEntry("result", layer2Output)] ++ debugLayer1) ++ debugLayer2)
6481 }
6582
6683

github/deemru/w8io/169f3d6 
33.94 ms