tx · FPJLJBHCFpWbureEe13BzNSfQbZFGFP6nVQzTvxGcaVB

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.03.20 12:07 [3026144] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "FPJLJBHCFpWbureEe13BzNSfQbZFGFP6nVQzTvxGcaVB", "fee": 1000000, "feeAssetId": null, "timestamp": 1710925713061, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "KwxhceLQVShJHbQbaaeqC6cwTwcGv1kk2VcykM2Bmddk1XSBDXySNodfnZUgg3eALj2npSnt7ZRwFx7hXDmUkj8" ], "script": "base64:AAIFAAAAAAAAAAgIAhIECgIBAQAAAAgAAAAADWxheWVyMVdlaWdodHMJAARMAAAAAgkABEwAAAACAAAAAAAASAnZCQAETAAAAAIA//////+zrIUFAAAAA25pbAkABEwAAAACCQAETAAAAAIAAAAAAABfA54JAARMAAAAAgD//////58MgwUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMUJpYXNlcwkABEwAAAACAP//////2YbeCQAETAAAAAIAAAAAAAAzuDoFAAAAA25pbAAAAAANbGF5ZXIyV2VpZ2h0cwkABEwAAAACCQAETAAAAAIAAAAAAAB7v3AJAARMAAAAAgD//////4ylsAUAAAADbmlsBQAAAANuaWwAAAAADGxheWVyMkJpYXNlcwkABEwAAAACAAAAAAAANUR+BQAAAANuaWwBAAAAB3NpZ21vaWQAAAACAAAAAXoAAAALZGVidWdQcmVmaXgEAAAAAWUAAAAAAAApekkEAAAABGJhc2UAAAAAAAAPQkAEAAAACW5lZ2F0aXZlWgkAAGgAAAACAP//////////BQAAAAF6BAAAAAdleHBQYXJ0CQAAawAAAAMFAAAAAWUFAAAACW5lZ2F0aXZlWgUAAAAEYmFzZQQAAAAIc2lnVmFsdWUJAABrAAAAAwUAAAAEYmFzZQUAAAAEYmFzZQkAAGQAAAACBQAAAARiYXNlBQAAAAdleHBQYXJ0CQAFFAAAAAIJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAIJAAEsAAAAAgUAAAALZGVidWdQcmVmaXgCAAAACW5lZ2F0aXZlWgUAAAAJbmVnYXRpdmVaCQAETAAAAAIJAQAAAAxJbnRlZ2VyRW50cnkAAAACCQABLAAAAAIFAAAAC2RlYnVnUHJlZml4AgAAAAdleHBQYXJ0BQAAAAdleHBQYXJ0BQAAAANuaWwFAAAACHNpZ1ZhbHVlAQAAAApkb3RQcm9kdWN0AAAAAgAAAAFhAAAAAWIEAAAACHByb2R1Y3QwCQAAawAAAAMJAAGRAAAAAgUAAAABYQAAAAAAAAAAAAkAAZEAAAACBQAAAAFiAAAAAAAAAAAAAAAAAAAAD0JABAAAAAhwcm9kdWN0MQkAAGsAAAADCQABkQAAAAIFAAAAAWEAAAAAAAAAAAEJAAGRAAAAAgUAAAABYgAAAAAAAAAAAQAAAAAAAA9CQAkAAGQAAAACBQAAAAhwcm9kdWN0MAUAAAAIcHJvZHVjdDEBAAAAC2ZvcndhcmRQYXNzAAAABAAAAAVpbnB1dAAAAAd3ZWlnaHRzAAAABmJpYXNlcwAAAAVsYXllcgQAAAAEc3VtMAkAAGQAAAACCQEAAAAKZG90UHJvZHVjdAAAAAIFAAAABWlucHV0CQABkQAAAAIFAAAAB3dlaWdodHMAAAAAAAAAAAAJAAGRAAAAAgUAAAAGYmlhc2VzAAAAAAAAAAAABAAAAARzdW0xCQAAZAAAAAIJAQAAAApkb3RQcm9kdWN0AAAAAgUAAAAFaW5wdXQJAAGRAAAAAgUAAAAHd2VpZ2h0cwAAAAAAAAAAAQkAAZEAAAACBQAAAAZiaWFzZXMAAAAAAAAAAAEEAAAACyR0MDEwMDUxMDYyCQEAAAAHc2lnbW9pZAAAAAIFAAAABHN1bTAJAAEsAAAAAgUAAAAFbGF5ZXICAAAABEwxTjEEAAAADXNpZ21vaWREZWJ1ZzAIBQAAAAskdDAxMDA1MTA2MgAAAAJfMQQAAAAEc2lnMAgFAAAACyR0MDEwMDUxMDYyAAAAAl8yBAAAAAskdDAxMDY3MTEyNAkBAAAAB3NpZ21vaWQAAAACBQAAAARzdW0xCQABLAAAAAIFAAAABWxheWVyAgAAAARMMU4yBAAAAA1zaWdtb2lkRGVidWcxCAUAAAALJHQwMTA2NzExMjQAAAACXzEEAAAABHNpZzEIBQAAAAskdDAxMDY3MTEyNAAAAAJfMgkABRQAAAACCQAETAAAAAIFAAAABHNpZzAJAARMAAAAAgUAAAAEc2lnMQkABEwAAAACBQAAAARzdW0wCQAETAAAAAIFAAAABHN1bTEFAAAAA25pbAkABE4AAAACBQAAAA1zaWdtb2lkRGVidWcwBQAAAA1zaWdtb2lkRGVidWcxAQAAABB4b3JOZXVyYWxOZXR3b3JrAAAAAgAAAAZpbnB1dDEAAAAGaW5wdXQyBAAAAAVpbnB1dAkABEwAAAACBQAAAAZpbnB1dDEJAARMAAAAAgUAAAAGaW5wdXQyBQAAAANuaWwEAAAACyR0MDEzMDIxMzk0CQEAAAALZm9yd2FyZFBhc3MAAAAEBQAAAAVpbnB1dAUAAAANbGF5ZXIxV2VpZ2h0cwUAAAAMbGF5ZXIxQmlhc2VzAgAAAAJITAQAAAARaGlkZGVuTGF5ZXJPdXRwdXQIBQAAAAskdDAxMzAyMTM5NAAAAAJfMQQAAAALaGlkZGVuRGVidWcIBQAAAAskdDAxMzAyMTM5NAAAAAJfMgQAAAALJHQwMTM5OTE1MzQJAQAAAAdzaWdtb2lkAAAAAgkAAGQAAAACCQEAAAAKZG90UHJvZHVjdAAAAAIJAARMAAAAAgkAAZEAAAACBQAAABFoaWRkZW5MYXllck91dHB1dAAAAAAAAAAAAAkABEwAAAACCQABkQAAAAIFAAAAEWhpZGRlbkxheWVyT3V0cHV0AAAAAAAAAAABBQAAAANuaWwJAAGRAAAAAgUAAAANbGF5ZXIyV2VpZ2h0cwAAAAAAAAAAAAkAAZEAAAACBQAAAAxsYXllcjJCaWFzZXMAAAAAAAAAAAACAAAAAk9MBAAAAAtvdXRwdXREZWJ1ZwgFAAAACyR0MDEzOTkxNTM0AAAAAl8xBAAAAAZvdXRwdXQIBQAAAAskdDAxMzk5MTUzNAAAAAJfMgkABRQAAAACCQAETAAAAAIFAAAABm91dHB1dAkABEwAAAACCQAAZAAAAAIJAQAAAApkb3RQcm9kdWN0AAAAAgkABEwAAAACCQABkQAAAAIFAAAAEWhpZGRlbkxheWVyT3V0cHV0AAAAAAAAAAAACQAETAAAAAIJAAGRAAAAAgUAAAARaGlkZGVuTGF5ZXJPdXRwdXQAAAAAAAAAAAEFAAAAA25pbAkAAZEAAAACBQAAAA1sYXllcjJXZWlnaHRzAAAAAAAAAAAACQABkQAAAAIFAAAADGxheWVyMkJpYXNlcwAAAAAAAAAAAAkABEwAAAACCQABkQAAAAIFAAAAEWhpZGRlbkxheWVyT3V0cHV0AAAAAAAAAAACCQAETAAAAAIJAAGRAAAAAgUAAAARaGlkZGVuTGF5ZXJPdXRwdXQAAAAAAAAAAAMFAAAAA25pbAkABE4AAAACBQAAAAtoaWRkZW5EZWJ1ZwUAAAALb3V0cHV0RGVidWcAAAABAAAAAWkBAAAAB3ByZWRpY3QAAAACAAAABmlucHV0MQAAAAZpbnB1dDIEAAAADHNjYWxlZElucHV0MQMJAAAAAAAAAgUAAAAGaW5wdXQxAAAAAAAAAAABAAAAAAAAD0JAAAAAAAAAAAAABAAAAAxzY2FsZWRJbnB1dDIDCQAAAAAAAAIFAAAABmlucHV0MgAAAAAAAAAAAQAAAAAAAA9CQAAAAAAAAAAAAAQAAAALJHQwMTkxOTIwMDAJAQAAABB4b3JOZXVyYWxOZXR3b3JrAAAAAgUAAAAMc2NhbGVkSW5wdXQxBQAAAAxzY2FsZWRJbnB1dDIEAAAADm5ldHdvcmtPdXRwdXRzCAUAAAALJHQwMTkxOTIwMDAAAAACXzEEAAAADGRlYnVnRW50cmllcwgFAAAACyR0MDE5MTkyMDAwAAAAAl8yCQAETgAAAAIJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAICAAAABnJlc3VsdAkAAZEAAAACBQAAAA5uZXR3b3JrT3V0cHV0cwAAAAAAAAAAAAkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAAOb3V0cHV0TGF5ZXJTdW0JAAGRAAAAAgUAAAAObmV0d29ya091dHB1dHMAAAAAAAAAAAEJAARMAAAAAgkBAAAADEludGVnZXJFbnRyeQAAAAICAAAAFWhpZGRlbkxheWVyT3V0cHV0MVN1bQkAAZEAAAACBQAAAA5uZXR3b3JrT3V0cHV0cwAAAAAAAAAAAgkABEwAAAACCQEAAAAMSW50ZWdlckVudHJ5AAAAAgIAAAAVaGlkZGVuTGF5ZXJPdXRwdXQyU3VtCQABkQAAAAIFAAAADm5ldHdvcmtPdXRwdXRzAAAAAAAAAAADBQAAAANuaWwFAAAADGRlYnVnRW50cmllcwAAAAAyd09+", "height": 3026144, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: Dt43XLUUf8BCJnkLcq3JC7kCQ4a6N3PTGwv5jeCvkDY2 Next: 2M6HVceMCCSxMt5DCypi4Uye6KUcaMYd3fZxBfo1itFh Diff:
OldNewDifferences
99
1010 let layer2Biases = [3490942]
1111
12-func sigmoid (z) = {
12+func sigmoid (z,debugPrefix) = {
1313 let e = 2718281
1414 let base = 1000000
1515 let negativeZ = (-1 * z)
1616 let expPart = fraction(e, negativeZ, base)
17- fraction(base, base, (base + expPart))
17+ let sigValue = fraction(base, base, (base + expPart))
18+ $Tuple2([IntegerEntry((debugPrefix + "negativeZ"), negativeZ), IntegerEntry((debugPrefix + "expPart"), expPart)], sigValue)
1819 }
1920
2021
2526 }
2627
2728
28-func forwardPass (input,weights,biases) = {
29+func forwardPass (input,weights,biases,layer) = {
2930 let sum0 = (dotProduct(input, weights[0]) + biases[0])
3031 let sum1 = (dotProduct(input, weights[1]) + biases[1])
31- let sig0 = sigmoid(sum0)
32- let sig1 = sigmoid(sum1)
33-[sig0, sig1, sum0, sum1]
32+ let $t010051062 = sigmoid(sum0, (layer + "L1N1"))
33+ let sigmoidDebug0 = $t010051062._1
34+ let sig0 = $t010051062._2
35+ let $t010671124 = sigmoid(sum1, (layer + "L1N2"))
36+ let sigmoidDebug1 = $t010671124._1
37+ let sig1 = $t010671124._2
38+ $Tuple2([sig0, sig1, sum0, sum1], (sigmoidDebug0 ++ sigmoidDebug1))
3439 }
3540
3641
3742 func xorNeuralNetwork (input1,input2) = {
3843 let input = [input1, input2]
39- let hiddenLayerOutput = forwardPass(input, layer1Weights, layer1Biases)
40- let outputLayerSum = (dotProduct([hiddenLayerOutput[0], hiddenLayerOutput[1]], layer2Weights[0]) + layer2Biases[0])
41- let output = sigmoid(outputLayerSum)
42-[output, outputLayerSum, hiddenLayerOutput[2], hiddenLayerOutput[3]]
44+ let $t013021394 = forwardPass(input, layer1Weights, layer1Biases, "HL")
45+ let hiddenLayerOutput = $t013021394._1
46+ let hiddenDebug = $t013021394._2
47+ let $t013991534 = sigmoid((dotProduct([hiddenLayerOutput[0], hiddenLayerOutput[1]], layer2Weights[0]) + layer2Biases[0]), "OL")
48+ let outputDebug = $t013991534._1
49+ let output = $t013991534._2
50+ $Tuple2([output, (dotProduct([hiddenLayerOutput[0], hiddenLayerOutput[1]], layer2Weights[0]) + layer2Biases[0]), hiddenLayerOutput[2], hiddenLayerOutput[3]], (hiddenDebug ++ outputDebug))
4351 }
4452
4553
5159 let scaledInput2 = if ((input2 == 1))
5260 then 1000000
5361 else 0
54- let networkOutputs = xorNeuralNetwork(scaledInput1, scaledInput2)
55- let result = networkOutputs[0]
56- let outputLayerSum = networkOutputs[1]
57- let hiddenLayerOutput1Sum = networkOutputs[2]
58- let hiddenLayerOutput2Sum = networkOutputs[3]
59-[IntegerEntry("result", result), IntegerEntry("outputLayerSum", outputLayerSum), IntegerEntry("hiddenLayerOutput1Sum", hiddenLayerOutput1Sum), IntegerEntry("hiddenLayerOutput2Sum", hiddenLayerOutput2Sum)]
62+ let $t019192000 = xorNeuralNetwork(scaledInput1, scaledInput2)
63+ let networkOutputs = $t019192000._1
64+ let debugEntries = $t019192000._2
65+ ([IntegerEntry("result", networkOutputs[0]), IntegerEntry("outputLayerSum", networkOutputs[1]), IntegerEntry("hiddenLayerOutput1Sum", networkOutputs[2]), IntegerEntry("hiddenLayerOutput2Sum", networkOutputs[3])] ++ debugEntries)
6066 }
6167
6268
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 5 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
44 let layer1Weights = [[4721113, -5002107], [6226846, -6353789]]
55
66 let layer1Biases = [-2521378, 3389498]
77
88 let layer2Weights = [[8109936, -7559760]]
99
1010 let layer2Biases = [3490942]
1111
12-func sigmoid (z) = {
12+func sigmoid (z,debugPrefix) = {
1313 let e = 2718281
1414 let base = 1000000
1515 let negativeZ = (-1 * z)
1616 let expPart = fraction(e, negativeZ, base)
17- fraction(base, base, (base + expPart))
17+ let sigValue = fraction(base, base, (base + expPart))
18+ $Tuple2([IntegerEntry((debugPrefix + "negativeZ"), negativeZ), IntegerEntry((debugPrefix + "expPart"), expPart)], sigValue)
1819 }
1920
2021
2122 func dotProduct (a,b) = {
2223 let product0 = fraction(a[0], b[0], 1000000)
2324 let product1 = fraction(a[1], b[1], 1000000)
2425 (product0 + product1)
2526 }
2627
2728
28-func forwardPass (input,weights,biases) = {
29+func forwardPass (input,weights,biases,layer) = {
2930 let sum0 = (dotProduct(input, weights[0]) + biases[0])
3031 let sum1 = (dotProduct(input, weights[1]) + biases[1])
31- let sig0 = sigmoid(sum0)
32- let sig1 = sigmoid(sum1)
33-[sig0, sig1, sum0, sum1]
32+ let $t010051062 = sigmoid(sum0, (layer + "L1N1"))
33+ let sigmoidDebug0 = $t010051062._1
34+ let sig0 = $t010051062._2
35+ let $t010671124 = sigmoid(sum1, (layer + "L1N2"))
36+ let sigmoidDebug1 = $t010671124._1
37+ let sig1 = $t010671124._2
38+ $Tuple2([sig0, sig1, sum0, sum1], (sigmoidDebug0 ++ sigmoidDebug1))
3439 }
3540
3641
3742 func xorNeuralNetwork (input1,input2) = {
3843 let input = [input1, input2]
39- let hiddenLayerOutput = forwardPass(input, layer1Weights, layer1Biases)
40- let outputLayerSum = (dotProduct([hiddenLayerOutput[0], hiddenLayerOutput[1]], layer2Weights[0]) + layer2Biases[0])
41- let output = sigmoid(outputLayerSum)
42-[output, outputLayerSum, hiddenLayerOutput[2], hiddenLayerOutput[3]]
44+ let $t013021394 = forwardPass(input, layer1Weights, layer1Biases, "HL")
45+ let hiddenLayerOutput = $t013021394._1
46+ let hiddenDebug = $t013021394._2
47+ let $t013991534 = sigmoid((dotProduct([hiddenLayerOutput[0], hiddenLayerOutput[1]], layer2Weights[0]) + layer2Biases[0]), "OL")
48+ let outputDebug = $t013991534._1
49+ let output = $t013991534._2
50+ $Tuple2([output, (dotProduct([hiddenLayerOutput[0], hiddenLayerOutput[1]], layer2Weights[0]) + layer2Biases[0]), hiddenLayerOutput[2], hiddenLayerOutput[3]], (hiddenDebug ++ outputDebug))
4351 }
4452
4553
4654 @Callable(i)
4755 func predict (input1,input2) = {
4856 let scaledInput1 = if ((input1 == 1))
4957 then 1000000
5058 else 0
5159 let scaledInput2 = if ((input2 == 1))
5260 then 1000000
5361 else 0
54- let networkOutputs = xorNeuralNetwork(scaledInput1, scaledInput2)
55- let result = networkOutputs[0]
56- let outputLayerSum = networkOutputs[1]
57- let hiddenLayerOutput1Sum = networkOutputs[2]
58- let hiddenLayerOutput2Sum = networkOutputs[3]
59-[IntegerEntry("result", result), IntegerEntry("outputLayerSum", outputLayerSum), IntegerEntry("hiddenLayerOutput1Sum", hiddenLayerOutput1Sum), IntegerEntry("hiddenLayerOutput2Sum", hiddenLayerOutput2Sum)]
62+ let $t019192000 = xorNeuralNetwork(scaledInput1, scaledInput2)
63+ let networkOutputs = $t019192000._1
64+ let debugEntries = $t019192000._2
65+ ([IntegerEntry("result", networkOutputs[0]), IntegerEntry("outputLayerSum", networkOutputs[1]), IntegerEntry("hiddenLayerOutput1Sum", networkOutputs[2]), IntegerEntry("hiddenLayerOutput2Sum", networkOutputs[3])] ++ debugEntries)
6066 }
6167
6268

github/deemru/w8io/169f3d6 
53.46 ms