tx · 6E7zaZ4wjSB9fjAqTL9Py14raWfez4jogsN994iBCpPg

3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY:  -0.01000000 Waves

2024.05.26 22:28 [3123386] smart account 3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY > SELF 0.00000000 Waves

{ "type": 13, "id": "6E7zaZ4wjSB9fjAqTL9Py14raWfez4jogsN994iBCpPg", "fee": 1000000, "feeAssetId": null, "timestamp": 1716751767080, "version": 2, "chainId": 84, "sender": "3N3n75UqB8G1GKmXFr4zPhKCjGcqJPRSuJY", "senderPublicKey": "2AWdnJuBMzufXSjTvzVcawBQQhnhF1iXR6QNVgwn33oc", "proofs": [ "3fUwDM74WpQDcMTaJkJyPiUTSmDSfe7aZuvvMyc5Z3nJr8WEAy1EtC2t74KJ74ALnyMe4TLy4nJrwvhcnDHP8KJf" ], "script": "base64:BwIICAISBAoCAQEIAA93ZWlnaHRzX2xheWVyXzEJAMwIAgkAzAgCAJHVAwkAzAgCAKnVAwUDbmlsCQDMCAIJAMwIAgDLwwIJAMwIAgDRwwIFA25pbAUDbmlsAA5iaWFzZXNfbGF5ZXJfMQkAzAgCAM+1/v///////wEJAMwIAgC1j/z///////8BBQNuaWwAD3dlaWdodHNfbGF5ZXJfMgkAzAgCCQDMCAIA4IoFCQDMCAIAjsP6////////AQUDbmlsBQNuaWwADmJpYXNlc19sYXllcl8yCQDMCAIAm9b9////////AQUDbmlsARBsaW5lYXJfZm9yd2FyZF8xAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAAAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAEAkE4JAJEDAgUGYmlhc2VzAAAEDXdlaWdodGVkX3N1bTIJAGQCCQBpAgkAZAIJAGgCCQCRAwIFBWlucHV0AAAJAJEDAgkAkQMCBQd3ZWlnaHRzAAEAAAkAaAIJAJEDAgUFaW5wdXQAAQkAkQMCCQCRAwIFB3dlaWdodHMAAQABAJBOCQCRAwIFBmJpYXNlcwABCQDMCAIFDXdlaWdodGVkX3N1bTEJAMwIAgUNd2VpZ2h0ZWRfc3VtMgUDbmlsARBsaW5lYXJfZm9yd2FyZF8yAwVpbnB1dAd3ZWlnaHRzBmJpYXNlcwQNd2VpZ2h0ZWRfc3VtMQkAZAIJAGkCCQBkAgkAaAIJAJEDAgUFaW5wdXQAAAkAkQMCCQCRAwIFB3dlaWdodHMAAAAACQBoAgkAkQMCBQVpbnB1dAABCQCRAwIJAJEDAgUHd2VpZ2h0cwAAAAEAkE4JAJEDAgUGYmlhc2VzAAAJAMwIAgUNd2VpZ2h0ZWRfc3VtMQUDbmlsAQdzaWdtb2lkAQVpbnB1dAMJAGYCAPCx/////////wEFBWlucHV0AAADCQBmAgUFaW5wdXQAkE4AkE4JAGQCAIgnCQBpAgUFaW5wdXQAAgESc2lnbW9pZF9hY3RpdmF0aW9uAgZpbnB1dHMLbnVtX291dHB1dHMJAMwIAgkBB3NpZ21vaWQBCQCRAwIFBmlucHV0cwAACQDMCAIJAQdzaWdtb2lkAQkAkQMCBQZpbnB1dHMAAQUDbmlsAQFpAQdwcmVkaWN0AgJ4MQJ4MgQJeDFfc2NhbGVkCQBoAgUCeDEAkE4ECXgyX3NjYWxlZAkAaAIFAngyAJBOBAZpbnB1dHMJAMwIAgUJeDFfc2NhbGVkCQDMCAIFCXgyX3NjYWxlZAUDbmlsBAJ6MQkBEGxpbmVhcl9mb3J3YXJkXzEDBQZpbnB1dHMFD3dlaWdodHNfbGF5ZXJfMQUOYmlhc2VzX2xheWVyXzEEAmExCQESc2lnbW9pZF9hY3RpdmF0aW9uAgUCejEAAgQCejIJARBsaW5lYXJfZm9yd2FyZF8yAwUCYTEFD3dlaWdodHNfbGF5ZXJfMgUOYmlhc2VzX2xheWVyXzIEAmEyCQEHc2lnbW9pZAEJAJEDAgUCejIAAAQGcmVzdWx0CQBpAgUCYTIAkE4EDWRlYnVnX291dHB1dHMFA25pbAkAlAoCBQ1kZWJ1Z19vdXRwdXRzBQZyZXN1bHQAv3CiRQ==", "height": 3123386, "applicationStatus": "succeeded", "spentComplexity": 0 } View: original | compacted Prev: FYY5e1t899S1xjoEgphoEeWuywfGRLTVAt65iBN8Pxv9 Next: 5McoSvfwCwE9qVWNc49Vbq3DJ4rEwZKwxwvjj2fD52Re Diff:
OldNewDifferences
2929 else (5000 + (input / 2))
3030
3131
32-func sigmoid_activation (inputs) = [sigmoid(inputs[0])]
32+func sigmoid_activation (inputs,num_outputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])]
3333
3434
3535 @Callable(i)
3838 let x2_scaled = (x2 * 10000)
3939 let inputs = [x1_scaled, x2_scaled]
4040 let z1 = linear_forward_1(inputs, weights_layer_1, biases_layer_1)
41- let a1 = sigmoid_activation(z1)
41+ let a1 = sigmoid_activation(z1, 2)
4242 let z2 = linear_forward_2(a1, weights_layer_2, biases_layer_2)
4343 let a2 = sigmoid(z2[0])
4444 let result = (a2 / 10000)
Full:
OldNewDifferences
11 {-# STDLIB_VERSION 7 #-}
22 {-# SCRIPT_TYPE ACCOUNT #-}
33 {-# CONTENT_TYPE DAPP #-}
44 let weights_layer_1 = [[60049, 60073], [41419, 41425]]
55
66 let biases_layer_1 = [-25905, -63563]
77
88 let weights_layer_2 = [[83296, -89714]]
99
1010 let biases_layer_2 = [-38117]
1111
1212 func linear_forward_1 (input,weights,biases) = {
1313 let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0])
1414 let weighted_sum2 = ((((input[0] * weights[1][0]) + (input[1] * weights[1][1])) / 10000) + biases[1])
1515 [weighted_sum1, weighted_sum2]
1616 }
1717
1818
1919 func linear_forward_2 (input,weights,biases) = {
2020 let weighted_sum1 = ((((input[0] * weights[0][0]) + (input[1] * weights[0][1])) / 10000) + biases[0])
2121 [weighted_sum1]
2222 }
2323
2424
2525 func sigmoid (input) = if ((-10000 > input))
2626 then 0
2727 else if ((input > 10000))
2828 then 10000
2929 else (5000 + (input / 2))
3030
3131
32-func sigmoid_activation (inputs) = [sigmoid(inputs[0])]
32+func sigmoid_activation (inputs,num_outputs) = [sigmoid(inputs[0]), sigmoid(inputs[1])]
3333
3434
3535 @Callable(i)
3636 func predict (x1,x2) = {
3737 let x1_scaled = (x1 * 10000)
3838 let x2_scaled = (x2 * 10000)
3939 let inputs = [x1_scaled, x2_scaled]
4040 let z1 = linear_forward_1(inputs, weights_layer_1, biases_layer_1)
41- let a1 = sigmoid_activation(z1)
41+ let a1 = sigmoid_activation(z1, 2)
4242 let z2 = linear_forward_2(a1, weights_layer_2, biases_layer_2)
4343 let a2 = sigmoid(z2[0])
4444 let result = (a2 / 10000)
4545 let debug_outputs = nil
4646 $Tuple2(debug_outputs, result)
4747 }
4848
4949

github/deemru/w8io/169f3d6 
28.88 ms