{
"version": 5,
"timestamp": 1741360389949,
"reference": "HLecmUTsXqjqrnDZKFYMTtpz2WULzgfwz3vk8mBLBXRN",
"nxt-consensus": {
"base-target": 199,
"generation-signature": "Q45mjF7qZFwWkZmmVzQUn1dfh837AcJxRj6FR264vGk6PCUNrsbYcGeJdoVaAPy7yuujwKi5Etm31jn3K9tq9vZuTamdyrxAE87Q3r1BCpWdhDHs1Tt1et5QpCNVatfC3oP"
},
"transactionsRoot": "F3xCXzr5ta57j4gBqu2Bcj1psBhGxUqdWBh8QQDSX2yg",
"id": "E8FaaphYeMakcGrj4bMmTBBPZity3Qv6qnS1FJR2BHBN",
"features": [],
"desiredReward": -1,
"generator": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"generatorPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"stateHash": "3CTyhc6exQExLhR1T1EEbKdd4tqyMa2ZuSG5iEwE5NgD",
"signature": "2Xt527Qp6RxJxb4sJJV6h3rv49qrmHMcwEseniZABWwXMaoaW5tYLWnFk2c6X1hHNtfmUSPPw8eW1BobbDwVo7sg",
"blocksize": 13066,
"transactionCount": 21,
"totalFee": 10500000,
"reward": 600000000,
"rewardShares": {
"3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr": 200000000,
"3Myb6G8DkdBb8YcZzhrky65HrmiNuac3kvS": 200000000,
"3N13KQpdY3UU7JkWUBD9kN7t7xuUgeyYMTT": 200000000
},
"VRF": "DTJ8D14FJH65JV2dprK8H1EmAewkvgmbBse9SDMAC47y",
"fee": 10500000,
"previous": "3533753",
"height": "3533754",
"next": "3533755",
"transactions": [
{
"type": 16,
"id": "Uc4tu3c4aTqC5orrEq8xz6iQmvTMVVsYpDfdMX51p6L",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360392436,
"version": 2,
"chainId": 84,
"sender": "3N5qcEiKJBDwpVZgCeJP814xDbE54ZG4LHo",
"senderPublicKey": "AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc",
"proofs": [
"fehr9JT5LRhPWa1vWRcM1kB9aJmn7HZXPuqGbqEgfPUaz2FMMTgnkvKrwv5pbHCwqCJpdEZ78H2PKsL7z3o2j82"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [
{
"amount": 10000000,
"assetId": "AxGKQRxKo4F2EbhrRq6N2tdLsxtMnpzQsS4QemV6V1W1"
}
],
"call": {
"function": "registerTask",
"args": [
{
"type": "string",
"value": "Provide a comprehensive and in-depth explanation of Large Language Models (LLMs)."
},
{
"type": "string",
"value": "chatgpt"
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "8USXATBs82sHuSrz4cYP7KayLVZnrP61vjeMDdy4gQ6W",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360396124,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"3nToWeQAnkC8GWoK2oss5pUtXknufK1FW61dSavzqbLzqvVxu5YBSVRRZHJdTyUGK2CSxabaN1zgQDZMRVqvWSCg"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "extendMainChain",
"args": [
{
"type": "string",
"value": "8d398121ad9a2f4e2c25f2e102ca8401165909360b41af93e81fe0ca4580aa65"
},
{
"type": "string",
"value": "6fbf7aa55cfbf3d461c0f8bd125e838025521816219aabf3a2deed6ac4370b8d"
},
{
"type": "binary",
"value": "base64:uQi05Hy6BP5kj3dc1ofqN/oyRgTiv5xeWBzJhAmowkg="
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "CWk42SrzWhvfofWLFdFEBwyah5LxydSmq3JfJem9bDrB",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360402205,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"4oDK1CnkXfh5P54rXi9W6Mt815PGyYAHXZtr3D1BWU6L3YHCBcCbkC8Voq7z77iMcaCkuTx2428gELUjVKRDU2VM"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "103e087a6aade34a78cc3db78468cc3ed2c3517faa94215d0a610bb05e5d6891"
},
{
"type": "string",
"value": "8d398121ad9a2f4e2c25f2e102ca8401165909360b41af93e81fe0ca4580aa65"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "C6KFZoSxuy7SejZbMH8XR1dfh1LpEa2UjzDo2neem1h",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360408105,
"version": 2,
"chainId": 84,
"sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat",
"senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY",
"proofs": [
"4esdTcDv9LkvSgXgtsX7WegcQ8QUzmNxv3ehBvQRMA7pxdt9Wp7xR8vYFU2FoMzenJc7fjFZY9DrNAb6NPvJsLiF"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [],
"call": {
"function": "checkoutTask",
"args": [
{
"type": "string",
"value": "Uc4tu3c4aTqC5orrEq8xz6iQmvTMVVsYpDfdMX51p6L_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc"
},
{
"type": "string",
"value": "chatgpt"
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "8LSVwYe5aMXvDKdVcMbepdSc31ruPGAXEB8BViWtNhUa",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360408218,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"5ZAQuLt62nL1Nngkt1jzyKtcuH2HxNTNtQ5G3SFEcvGn9AfGxXc3U94AXtrbEm5w1fRioifDng7MDuZf31LF4kHV"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "a2992817e2a3278a362cfd0c506b85f606946c339d6ea40e2f0aceabaee380b0"
},
{
"type": "string",
"value": "103e087a6aade34a78cc3db78468cc3ed2c3517faa94215d0a610bb05e5d6891"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "FdSwJiwCpgYnbyNUdrvz9ZmvSuXrvCoS3pFXvWoJckAd",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360414272,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"5BUXBqaMCoRa9qPcijnTVxQgnoUoJK887E5xbayqzeSSi8FAY789xmCiDUGezj2XzarEaFokHaPZYeiSpHb9YkkZ"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "23f7fbe27a65e46d9a3ba03d633055ae974a21985e7da5e5ef61e6b16cf5174c"
},
{
"type": "string",
"value": "a2992817e2a3278a362cfd0c506b85f606946c339d6ea40e2f0aceabaee380b0"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "6RA2xdoPNuCQr6BA6Bh6eRzyyzipJNdewrDpU6H9vN4e",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360420303,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"38iMXhezMri6WaJctHQ2BJdKNQqfS71thr6eDw5XX3iaLDjuKC5y29zuU6A9PUctzqY71TRv6qoqJuGkqKz8turK"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "45308b4921653abace2e74f02808c7c892735729986c5514b52e9de0c0a39b47"
},
{
"type": "string",
"value": "23f7fbe27a65e46d9a3ba03d633055ae974a21985e7da5e5ef61e6b16cf5174c"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "Xpwp2ZVfCSDMhqwXJEZKAjLDCfYY57Asz5BPSzkSbxd",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360426327,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"5VbYXHtnPCx8F6jbV7KWcqbSMDiiP59HSyR4tLEomWyrpnzjYNNXE9moezAk5nSnZonyEF1PNbpE8tS2fBzkuhVY"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "fc4dc566abcafee7f13f0a995810063f66eb548f7fee3893c86ebaac05c031bf"
},
{
"type": "string",
"value": "45308b4921653abace2e74f02808c7c892735729986c5514b52e9de0c0a39b47"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "eX32aUFG2K4bgAFozGfKSvbCoS455JfToFW3wpLiz5F",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360427760,
"version": 2,
"chainId": 84,
"sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat",
"senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY",
"proofs": [
"5JPARsqcDpcSDicZX3deHnJMeTyEJY7UArWARqpumcxLuUKHQveNHTCaea7dvhTaYv4T7F4DfHLfN22XL4nciSj7"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [],
"call": {
"function": "commitTask",
"args": [
{
"type": "string",
"value": "Uc4tu3c4aTqC5orrEq8xz6iQmvTMVVsYpDfdMX51p6L_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc"
},
{
"type": "string",
"value": "Large Language Models (LLMs) refer to advanced artificial intelligence models designed to process and understand natural language. They are built using deep learning techniques, particularly transformers, and are trained on massive amounts of text data to learn the complex patterns and structures of human language.\n\nKey characteristics of LLMs include:\n1. **Scale**: LLMs are designed to process vast amounts of data, often billions of parameters, which enable them to generate more coherent and contextually relevant text. The scale of these models contributes to their ability to handle a wide range of language tasks.\n\n2. **Pre-training and Fine-tuning**: LLMs typically undergo two stages of training: pre-training and fine-tuning. During pre-training, the model is fed large amounts of text data to learn the relationships between words and phrases. Fine-tuning involves training the model on specific tasks or domains to adapt it to specific use cases.\n\n3. **Contextual Understanding**: LLMs have the ability to understand the context in which a word is used within a sentence or text. This contextual understanding is derived from the transformer architecture, which allows the model to capture dependencies between words in a sequence.\n\n4. **Multi-Task Learning**: LLMs are capable of performing a wide range of language-related tasks, such as text generation, translation, summarization, sentiment analysis, question-answering, and more. This multi-task learning capability makes them versatile and applicable across various domains.\n\n5. **Efficiency and Speed**: Despite their large size, modern LLMs are designed to be efficient in terms of memory and compute resources. Techniques like model distillation and knowledge distillation are employed to reduce the computational requirements while retaining high performance.\n\n6. **Ethical Considerations**: LLMs pose ethical considerations related to bias, fairness, and potential misuse. Models trained on biased data can perpetuate and amplify existing biases in society. Therefore, researchers and developers are actively working on strategies to mitigate bias and ensure fairness in LLMs.\n\n7. **Applications**: LLMs have a wide range of applications across industries, including natural language understanding, virtual assistants, content creation, code generation, and more. They have significantly improved the performance of various language-related tasks and are continuously advancing the field of natural language processing.\n\nIn summary, Large Language Models represent a significant advancement in natural language processing technology, enabling machines to understand and process human language with a level of sophistication and accuracy previously unseen. Their scale, contextual understanding, multi-task learning capabilities, and efficiency make them powerful tools for a wide range of language-related tasks and applications."
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "C4tAJAUNRVPLPpYgsHQcRfJmLwtLEzCBfRLZKGCwiQLq",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360432344,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"2LYjStcAtpUzFT9LUDqQwaLjfkgdc9aYPsr6Vg6DHUTBbwf71KyJgtE6WxdEjF33bWRCVEtPE6wPyYjhB2pAP6p9"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "b0de32558b9d328cc6a81b3ae89bb4446ac196d8afb3bb6e2901ef91aeb20041"
},
{
"type": "string",
"value": "fc4dc566abcafee7f13f0a995810063f66eb548f7fee3893c86ebaac05c031bf"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "DUyCHcgLYH4TPG4JqUKeK55FGkW73U7GGpL8CyzqWUxg",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360438364,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"5W8EVKGuzuLwbZM4vCZn8CkBkSb4jjptn3vjGcxBQx1NWSs4cZeSNdJKdXKy3DDwMG8wkAnZqWXbbaYXgdi61932"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "62c40db6c72bdb000ba74d577fc7d42c5daaf1138300c5cc1603b9c18e8678e6"
},
{
"type": "string",
"value": "b0de32558b9d328cc6a81b3ae89bb4446ac196d8afb3bb6e2901ef91aeb20041"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "6QJdBzhPsVZZA4T1ZcPpJNwUcGhhxK4YPDBJRE55d2Ba",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360444364,
"version": 2,
"chainId": 84,
"sender": "3N5qcEiKJBDwpVZgCeJP814xDbE54ZG4LHo",
"senderPublicKey": "AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc",
"proofs": [
"wReZMW71G77qCFBaWRekZANNYTQibS8ceTDg4YZVAyPds1jYsUzYQ5GvURnF6KGm78uBEoydwfLoi6XtyfPe8f5"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [
{
"amount": 10000000,
"assetId": "AxGKQRxKo4F2EbhrRq6N2tdLsxtMnpzQsS4QemV6V1W1"
}
],
"call": {
"function": "registerTask",
"args": [
{
"type": "string",
"value": "Provide a comprehensive and in-depth explanation of Large Language Models (LLMs)."
},
{
"type": "string",
"value": "chatgpt"
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "EhQb9mYbhpH1ApDSEfPjeGgQHNHKCqew8UL655jNp5d4",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360444379,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"4WdpCFdjTSHSxnTnF2S5fJw3qxJ6uuD9AmZmLrt4VDLQwGxp59FEGXXYKmQ3KZVhmxmQtqq1QqTpX7TuxdvM2Yam"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "657a31f84a4c3965a1ab4e3bffa4da362be226d57d150727aa53e915711241e7"
},
{
"type": "string",
"value": "62c40db6c72bdb000ba74d577fc7d42c5daaf1138300c5cc1603b9c18e8678e6"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "G1c9669A7eG7wU7KK2oWhaaogujeqsYpJQo5yRxsozYt",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360450437,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"4Y3Spu2ERVa4FtsjFJNhXochW5mFZ1AGN8M9wqnkWLGNVFDpuoKe2NGXzGw8K239f693NDdobYa1NJH5v3BCwCTt"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "26a28936b7a02dd69826140174fc899416cd157bfb9a5b1bac862f195e6bb95a"
},
{
"type": "string",
"value": "657a31f84a4c3965a1ab4e3bffa4da362be226d57d150727aa53e915711241e7"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "AaU756r1PDQ99ZRwsqgY9nBQRRYYP2X6PSLqa4Po7iak",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360456469,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"4u3UBwLw6Y4M8DsJdoGTKQsfAAuYF9wyyqhPBBNN6gtBowv4zWSM5hNrnQUESPCr9aFWftjNDjxoQXfB1bby5tE9"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "c2be9a3405eccfb86a79f287813391a14d66a5480cad73f677a7d23d44ed7000"
},
{
"type": "string",
"value": "26a28936b7a02dd69826140174fc899416cd157bfb9a5b1bac862f195e6bb95a"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "Vw2oFMwxRVM2XnReYhCaZvL6GNptZi6RdVMQmxw64G7",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360460178,
"version": 2,
"chainId": 84,
"sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat",
"senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY",
"proofs": [
"4UQVoJjPFTD2C5q3HJRMDogcPD6ABveMkGtKs7sqBDuZfb1CQymQYYexW1YFNcRWPfXQjU5hUZ35ih58ejjHuRB9"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [],
"call": {
"function": "checkoutTask",
"args": [
{
"type": "string",
"value": "6QJdBzhPsVZZA4T1ZcPpJNwUcGhhxK4YPDBJRE55d2Ba_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc"
},
{
"type": "string",
"value": "chatgpt"
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "47YYqjvCyJgJrXVRECXrp1S1CsmHFfuqjsWi6XujMmfj",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360462494,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"25sYQAJNk7c5thxXqxu6RNzr8cs4UY7oRedhsMUVtFaXy5QNDAwN17mvd17s9dbw9HW6DSi5iz5gsK1TFxzTDqie"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "c4045d1f9720862cdcc10a6414f40e06093e34f49a315087a3304102edfb0733"
},
{
"type": "string",
"value": "c2be9a3405eccfb86a79f287813391a14d66a5480cad73f677a7d23d44ed7000"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "FahUSuJ6CrWnZ6eenmSW6JYtqL6JaxEtPUTAnf8xXjJ8",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360468518,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"2fj6J6ZjMv3edXzfz8k4TuA9jPz2cHdNnR5zhDzXHtnNee9KVBYjUoR1g264eNPPL8ZnBWpheBE44isnNXziheBe"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "9545cb39a1dcde73b23624fd556f40dc378842b6a3390785f596bae52399efc5"
},
{
"type": "string",
"value": "c4045d1f9720862cdcc10a6414f40e06093e34f49a315087a3304102edfb0733"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "HNaBS9WCp1z3JQgDDPVwus2m6nXgM5gFqCNrNZo8cSMY",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360474550,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"uU3gDDh43d3GojzPAXDWC93xAhEpYHacRmmCtXiCx9S6YAJu63ynx39yz3yPMb9kNZjk54BwVcfoif8ungYCp66"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "bf917a2a4fd285665dc5b0461dadc5acd1d6af53d76ed8f77e535e9271ad1e5f"
},
{
"type": "string",
"value": "9545cb39a1dcde73b23624fd556f40dc378842b6a3390785f596bae52399efc5"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "6yftaBbRD82pcugh1sKvJrQjakts2nETVnW6BuQLGryN",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360480583,
"version": 2,
"chainId": 84,
"sender": "3Msjb7fHtosdG8QJZ2b8YYCp6dpcK6Ck9Qr",
"senderPublicKey": "8rnD2WdZ1QUhW6Q9FHbZ5BRcnEvLnLkfqdKz8HY18Qm5",
"proofs": [
"5kHCfFZynhmZGB6oMV2yC9Sbaow2Ef6eM7UXmvE8FCvHpEtx58dVMba2scHQPr5WRfcujj69AHNsjU2KcBG2ezyM"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "e91940f599add6007686125c0c26ea0fcc079f99785a8164f4830aef43a7a4ca"
},
{
"type": "string",
"value": "bf917a2a4fd285665dc5b0461dadc5acd1d6af53d76ed8f77e535e9271ad1e5f"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "C61E1zctx5DXgQdZRN4ZEC4hDqtLYpV9fQchHXfSzEWs",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741360481117,
"version": 2,
"chainId": 84,
"sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat",
"senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY",
"proofs": [
"28fuCCsXc764uawR7LbVkCDWWXwWQytkhCm6UCp3J887zrNdgaQzzuBAXoSdAk9nVMVeF4jhVUxzAxfCbZZkrWtM"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [],
"call": {
"function": "commitTask",
"args": [
{
"type": "string",
"value": "6QJdBzhPsVZZA4T1ZcPpJNwUcGhhxK4YPDBJRE55d2Ba_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc"
},
{
"type": "string",
"value": "Large Language Models (LLMs) refer to a class of artificial intelligence models that are designed to understand and generate human language at a massive scale. These models have gained immense popularity and importance in natural language processing (NLP) due to their ability to process and generate text data with human-like fluency and coherence. LLMs are built using deep learning techniques, particularly utilizing a type of neural network known as transformers.\n\nHere are some key components and concepts related to Large Language Models:\n\n1. **Transformer Architecture**: The transformer architecture has revolutionized the field of NLP and serves as the foundation for many Large Language Models. Transformers rely on self-attention mechanisms to help the model focus on different parts of the input text when processing it. This enables them to capture long-range dependencies in the input data, making them highly effective for language tasks.\n\n2. **Pre-training and Fine-tuning**: LLMs are typically trained on vast amounts of text data in an unsupervised manner before being fine-tuned on specific downstream tasks. Pre-training involves training the model on a large corpus of text, such as books, articles, and websites, to learn the intricate patterns and structures of language. Fine-tuning then involves further training the model on a smaller, task-specific dataset to adapt it to perform well on a specific task, like text generation or sentiment analysis.\n\n3. **Parameter Size**: One of the defining characteristics of Large Language Models is their massive number of parameters. Models like GPT-3 (Generative Pre-trained Transformer 3) from OpenAI have billions of parameters, which enable them to capture and generate complex linguistic patterns. The sheer scale of these models allows them to achieve remarkable performance on various NLP tasks.\n\n4. **Applications**: Large Language Models have a wide range of applications across various industries. They are used for tasks such as text generation, language translation, sentiment analysis, chatbots, summarization, and more. Businesses leverage LLMs to automate customer support, generate content, analyze feedback, and improve the overall user experience.\n\n5. **Ethical Considerations**: The deployment of Large Language Models has raised ethical concerns regarding biases, misinformation, and potential misuse. Due to their capacity to generate human-like text, there is a risk of spreading misinformation and fake news. Researchers and developers are working on enhancing the robustness and fairness of these models to ensure responsible deployment.\n\nIn conclusion, Large Language Models represent a groundbreaking advancement in the field of natural language processing, enabling machines to understand and generate human language on a massive scale. Their applications are vast, and their impact on various industries continues to grow as researchers push the boundaries of what is possible with these models. It is essential to consider the ethical implications and ensure that LLMs are developed and utilized in a responsible and transparent manner."
}
]
},
"applicationStatus": "succeeded"
}
]
}