{
"version": 5,
"timestamp": 1741357913030,
"reference": "84FmXVKfSk2cduJJ8odYXW5NDm2sHcEdG7k6sfWBuC3x",
"nxt-consensus": {
"base-target": 197,
"generation-signature": "LPg4WxDwBj8TEe4LXLEtRvnPrtqwEHVuH7CjfogFiEdcas6n6gJFGX7F9DMNdd1dZp7AhHbnykfR6Nu39pTCn1iaHVHkFUbcPeVfukKzpwFnEpWeAsKoRXqVxgVfyxUGdsv"
},
"transactionsRoot": "EKM1VFh5NpmJLAms2fVHMWfb9xb5zc1fJHpFufbeHtSn",
"id": "6YBB1VAv6dB4PEB2dPcb67QVYVUz45UX7mXV7ZP2PidC",
"features": [],
"desiredReward": -1,
"generator": "3NA4UdyFVv7v1J6UgGe4moyHm2fambavqvm",
"generatorPublicKey": "C5xv7bdAfKaQyvHfhUvC2NkfWfLVN7VUPsdHmHMJ5crN",
"stateHash": "4g6ASAQPUTgmLLjvzg9uEUbmJXxJFjjg8J4MYkrZib3i",
"signature": "2Ch5oRgu4T1NpYFdkpAHFpBj4WrvJhrVHop2Qeyvb9StDCpd3FUUFmkjRn5QQiD9vpYxkUcEbjzTuvsV9MPm8qpC",
"blocksize": 12377,
"transactionCount": 30,
"totalFee": 15000000,
"reward": 600000000,
"rewardShares": {
"3Myb6G8DkdBb8YcZzhrky65HrmiNuac3kvS": 200000000,
"3N13KQpdY3UU7JkWUBD9kN7t7xuUgeyYMTT": 200000000,
"3NA4UdyFVv7v1J6UgGe4moyHm2fambavqvm": 200000000
},
"VRF": "5KhzRpdjicHiDpwh55dyQKC4mtVRXitfysgQe3vkyiKp",
"fee": 15000000,
"previous": "3533714",
"height": "3533715",
"next": "3533716",
"transactions": [
{
"type": 16,
"id": "7nX36rNpAFB1WbzBp3xnHwknhRafZWAqpWqqQyR1ciPn",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357916758,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"yuQrVzFh8nUpDgB3hFW5aur7VghxLQjSsW6fCVoVvbgdeujbZa9bWipojockZ7iqA26DHLfyuwrfmEYhqLJsWn4"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "finalizeVoting",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "3iA2ZtuaHoWXtejYUigkzHfV3qz7qJd4VxRg6p6S1Gvr",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357916772,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"5mNY45CBSxeMqiaGsei1kkR1EQN7BVUNcog4LXVwJ1wm2gjdMAJi6H3cAQaKR9wdbR4uGymaf6AxRvFtvpeX72HE"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "finalizeVoting",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "EXNT9CKVPruwmPttctu2oCD32tDmvSTxR3R49cTTG3DQ",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357920939,
"version": 2,
"chainId": 84,
"sender": "3N5qcEiKJBDwpVZgCeJP814xDbE54ZG4LHo",
"senderPublicKey": "AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc",
"proofs": [
"3gx2W6P2PgB97tTQv5QUMTA25xQFtQVzut1LcL9x6d96JUqzz2n5hjFJhisUiZMXi8PD3iFzCmyFKozqMqvHnjNq"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [
{
"amount": 10000000,
"assetId": "AxGKQRxKo4F2EbhrRq6N2tdLsxtMnpzQsS4QemV6V1W1"
}
],
"call": {
"function": "registerTask",
"args": [
{
"type": "string",
"value": "Provide a comprehensive and in-depth explanation of Large Language Models (LLMs)."
},
{
"type": "string",
"value": "chatgpt"
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "74hrFUFkvfzYQGNR3gmAaNenq5GsCtaeJ1WDAuYfnhRr",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357926793,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"53ixC1FUsDzkoKVR2FwGAZfySm9GZcHsH2VCymvxVQw2vH6MJpsRk88DWeNjGHmhf7Lfu75zQ8V5CBBCr5aqg6YR"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "finalizeVoting",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "3JrPrUn3HgVchi8CyZCBwDAin6eg4z67mZQQazVdddXy",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357926805,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"3QCeHWN7eFAwP3Az4p1BSWdanhCmk4Yid14QTC8QRb7UoeVKJJs6QBUBozyYPhsFbqrzh6faQnE976uf8LFtX2Ta"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "finalizeVoting",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "3NjSMwifDAcRU1hgWTfMhGGYxC6jUBUm3aMmTcihspg7",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357936824,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"2oHqc2RGNhCYYLmXq9c7stPF5CxmmRHraXWJ4HM2CA2Ng4BwM9ifR4hnS4tj3L7DWYxARN7dyafvZYCKHNtdE8af"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "finalizeVoting",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "6mJoEdvU3EZRTWHvhnyLdKqcCwaRK42j5cmCo8XxRnov",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357937137,
"version": 2,
"chainId": 84,
"sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat",
"senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY",
"proofs": [
"4Jq2LpXmFmFDHysJegDCKh2Jrp5Nav8xiW2PeHp9KgcjXR3FpNFG3dkbpqWNd5pgZ8KjeARjaiMXAdnRTsxGLz23"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [],
"call": {
"function": "checkoutTask",
"args": [
{
"type": "string",
"value": "EXNT9CKVPruwmPttctu2oCD32tDmvSTxR3R49cTTG3DQ_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc"
},
{
"type": "string",
"value": "chatgpt"
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "6rtnUq6VT12hJpxBz7bDRuMypStP6zw5LDUcumRLxPcB",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357936838,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"6QKn3CrVxGsf27Wj1ihC3JULfvcez1YeL4YSnrydjCgjeJpgvA2xZ2EB7wkswum77eMw8FXLxWGRvYAs2HtT9iW"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "finalizeVoting",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "2Jim2qvpHDR9FMVSJaswKaNmQNVf1Ko8KNYAzoc1pEwL",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357946859,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"2nve5izjXiMP4QCYHpJfufdZRDvT7ZDXTXoBKHZuYCwo3edLKXo2JUyjnmBeqMWPNRz32zgKc6bZ1tjjawiXYUNc"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "finalizeVoting",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "wH5ETwypR4JHtcvKpYTRomx8MXWC3A5SCW52P7hJ8ns",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357946872,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"Skc8tVSGGyGPFoaLLr3MSqe46bGAaxaVU2Wovtf87HSs57xQFJoV1FK228j3S5EzbbiBsTkA566qgWqnZnaNZt2"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "finalizeVoting",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "4rSCuHhBhtaH7sDjeH1EJ8DCZADxvUprMZzVg4Bzdrsf",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357956891,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"3UXymzgUBtzPmMqGzNc6GhWWFCQNRqT4Hh6hJGvxn7D2TicvJ6VCwwLUM2LJkk733XfW3ooYUd9eYkfHMRofp83Y"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "finalizeVoting",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "9aMW9udP7Xfo96sCCsCN7GNtaKuKHz11hZpFwTxuBF8F",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357958782,
"version": 2,
"chainId": 84,
"sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat",
"senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY",
"proofs": [
"61QfRziFtpZKW3nu4VZGq86SGgnvxs1sVQ3GM7KEUmumqt873AG7dBuYHfNkRXbaYNoUiAPtsxwCK4MnuBN6ChpM"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [],
"call": {
"function": "commitTask",
"args": [
{
"type": "string",
"value": "EXNT9CKVPruwmPttctu2oCD32tDmvSTxR3R49cTTG3DQ_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc"
},
{
"type": "string",
"value": "Large Language Models (LLMs) refer to a category of artificial intelligence models that have been trained on vast amounts of text data to understand and generate human-like language. These models are predominantly based on deep learning techniques, particularly variants of neural networks such as transformer architectures. LLMs have gained significant attention and popularity in recent years due to their remarkable ability to perform a wide range of natural language processing (NLP) tasks with human-like proficiency.\n\nKey components and characteristics of Large Language Models include:\n\n1. **Training Data**: LLMs are trained on massive text corpora, typically sourced from diverse and expansive sources such as books, articles, websites, and more. The vast amount of data enables the models to learn the intricacies and nuances of human language across different domains and contexts.\n\n2. **Transformer Architecture**: LLMs are most commonly built using transformer architectures, which are specifically designed to handle sequential data like text. Transformers are comprised of attention mechanisms that allow the model to capture long-range dependencies within the input text, enabling more effective modeling of context and semantics.\n\n3. **Pre-training and Fine-Tuning**: LLMs are typically pre-trained on a large corpus of text using unsupervised learning techniques such as self-supervised learning. This pre-training phase allows the model to learn general language patterns and representations. Subsequently, the model can be fine-tuned on specific downstream tasks, such as text generation, translation, sentiment analysis, and more.\n\n4. **Self-attention Mechanism**: The self-attention mechanism in transformer architectures is a crucial component that enables the model to weigh the importance of different words in a sentence when processing information. This mechanism helps capture relationships between words and context dependencies, leading to more accurate and contextually relevant predictions.\n\n5. **Parameter Size and Scale**: LLMs are characterized by their enormous number of trainable parameters, which can range from hundreds of millions to billions. The large parameter size contributes to the model's capacity to learn complex patterns and relationships from the training data, leading to improved performance on various NLP tasks.\n\n6. **Applications**: LLMs have been widely applied in a multitude of NLP tasks, including language modeling, text generation, machine translation, sentiment analysis, question answering, and more. They have demonstrated state-of-the-art performance on benchmark datasets and have become essential tools in various industries for automating text-related tasks.\n\n7. **Ethical and Societal Implications**: The widespread adoption of LLMs has raised concerns about ethical considerations such as bias, misinformation, privacy, and misuse. Researchers and practitioners are actively working to address these issues by developing methods to enhance the fairness, transparency, and accountability of LLMs.\n\nIn conclusion, Large Language Models represent a significant advancement in the field of NLP, with transformative potential across various domains and applications. They have revolutionized the way we interact with and process natural language, paving the way for more advanced and sophisticated language-based AI systems."
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "AUkBcdfag6p2XsAmuD1cJzuyD6bvz9R8uNJ4kuVhmUeC",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357967487,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"516AaWPa1YyDw6JhaGDwhdHiXLC3izXT4wYWev2tmiaj9jjMJSAFvps6URwV77msCvNV7JpJ7XiszbnPFBMHjZgc"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "3L4ViXHuYeNy2pX2EPHvsGuZbJ1hMHRTiAJKrBUavmYK",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357967501,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"3rARwkCfQ8cR1R4Lt8i2vdMtDyogPFN5whQFKm9A3hHmGvanxg45bpdKhwc6exQuaZY5r3tbjXn1GnAAbpzbXnM1"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "GE2DcH3AJayV6ngEEbbQqPFxGzsHqFgiLPZgTBP9MdrE",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357975860,
"version": 2,
"chainId": 84,
"sender": "3N5qcEiKJBDwpVZgCeJP814xDbE54ZG4LHo",
"senderPublicKey": "AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc",
"proofs": [
"2GP3NrA3JUiKfaz4zLVzxugYpXkLFyrrQZjuy9Ge2w5gEZuvB5VC6h3XBr18u8xAxQ6zaerTMKSn8HhfQC7NyFcB"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [
{
"amount": 10000000,
"assetId": "AxGKQRxKo4F2EbhrRq6N2tdLsxtMnpzQsS4QemV6V1W1"
}
],
"call": {
"function": "registerTask",
"args": [
{
"type": "string",
"value": "Provide a comprehensive and in-depth explanation of Large Language Models (LLMs)."
},
{
"type": "string",
"value": "chatgpt"
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "7cF4PLGegzfGkE2pPpcQVNir5PhctPh3QGBVTrf2igSa",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357977533,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"28hfmxAV7aXGVeytpLz2UAuKwUAG7vbUmp5Ve88aKJBQhJ8kyPtk3HN1Y5TAyzkYLJjjrbVrFSX2WJ4faBVowotj"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "HoPYmXjQAPnceoFWYKC7YJdDwJqZwLFz7WPuuoAEd9wx",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357977546,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"3foRmubame5mWovS8uhVKZztpr4iZLmxvhuAkamwfVL6iC36aUUZdKiKet1tusMn5AXWqJFo4Gv2rj66xQvH8aXU"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "4ZqBBeXD7116ALSE5quoQYzZAHndJW4PLWtGromSoBPU",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357987562,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"5Jn3uxKPQAgzdc6eAy7xdTAxZNZZiTwTzVzCRhh4yZ7yZD6FLjAgYbS2WGhbMK64z6PCHcZ4NJZuivELxy6PbZ6T"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "3taSzfGZm6pbELC9RoCVDrvWewdvy1dxUxBBjWCHTAhW",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357987577,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"5CZDUrix8JBgu26QZxS8Zz7WC4TgX3jjDrvo83aEnwchsemr38YANZppEaQrtGt6SDBCGXnHcVkm5pKJdrit9Q5"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "4MfPzHRedGTLj9RCyCGRG79BkDoUMJZa2qEbCdHXsQZe",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357992140,
"version": 2,
"chainId": 84,
"sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat",
"senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY",
"proofs": [
"4wbck19wZKatw6u6diwjjUgqUF5FTSX43Z565HMd7k57js9oc4rvQq9BMichQyBtmRJwWT1mpM9U7UfiegjAZidC"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [],
"call": {
"function": "checkoutTask",
"args": [
{
"type": "string",
"value": "GE2DcH3AJayV6ngEEbbQqPFxGzsHqFgiLPZgTBP9MdrE_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc"
},
{
"type": "string",
"value": "chatgpt"
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "E7GwkmHmChGZT3XbRNYdQyn69d1KPuNw4CarQWLDwN2Z",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357997607,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"Eks1byrMZCBR1QmUDm9nWYnzGnyha596wL43FbSXmsysyXhLiuihez73mxhAcTiCUWnwh683sojZBiKvoAtT6Li"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "6gnMp83wXVHhmMKVoDzLfEyDiABS2pnaQuxhSonAw6zC",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357997622,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"2WuzBXnXCwFPNW9rhGz3fr9Sak2iHtxksJ4Angc4xdXTXeLT8hyxnEuC6R2PqPzu11rLqpw4BFc1KVzcEwfZR3Kj"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "9o8DsBxRCCTb29dq1uJLRMsNFEh2UB4erYS1SWw5fSJ1",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741358007641,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"dLyHyCyMsgLYYSpRjWrBiNtpve826Hjn7evp5SiY71ijNy3B9qfMeHfbdA2dtVqmzfXAHffgpQs7mvrPLHkCo7B"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "4qpm6tL9i9yykcRkzxdUfHdUHXAy9Yz1dF8G6j1cpFye",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741358007655,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"27f4L9i9xCk5qdPUJdtmEbtqbptvDcJWimj3NX32d4eLzc5BG57xKVDTUemyg2ZffZWJLD3Jo5nHRu6YKqUU8KXF"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "Cy8N8pgnYGYdpZPi9tSD6RjUtqA2JqJsvoeR4FRJjZdv",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741358012339,
"version": 2,
"chainId": 84,
"sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat",
"senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY",
"proofs": [
"4tBzqz5jjQR6Zk5kGTSz5WL5eGfihNwhC3PirSNjLCSRWiLrS8Tppb222VfqSEYky4o6ZKtEKjQWWfJFBacDKUei"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [],
"call": {
"function": "commitTask",
"args": [
{
"type": "string",
"value": "GE2DcH3AJayV6ngEEbbQqPFxGzsHqFgiLPZgTBP9MdrE_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc"
},
{
"type": "string",
"value": "Large Language Models (LLMs) are a type of artificial intelligence model that uses deep learning techniques to understand and generate human language. These models are built using neural networks with a large number of parameters, hence the "large" in their name. LLMs have gained a lot of attention and popularity in recent years due to their ability to perform a wide range of natural language processing tasks, including text generation, translation, summarization, and question-answering.\n\nThe key idea behind LLMs is to train a neural network on a massive amount of text data, such as books, articles, and internet content, to learn the patterns and structures of language. By processing and analyzing this data, the model can build a rich understanding of grammar, syntax, semantics, and context, allowing it to generate coherent and contextually relevant text.\n\nOne of the most popular architectures for LLMs is the transformer model, which was introduced by Vaswani et al. in the seminal paper "Attention is All You Need." The transformer's key innovation is the self-attention mechanism, which enables the model to weigh the importance of different words in a sentence when processing and generating text. This mechanism allows the transformer to capture long-range dependencies and context information more effectively than previous models.\n\nTo train LLMs effectively, researchers typically use large-scale datasets and powerful computing infrastructure, such as GPUs or TPUs, to handle the massive amounts of data and computation required. In addition, techniques like pretraining and fine-tuning are often used to improve the performance of LLMs on specific tasks. Pretraining involves training the model on a general language modeling task, such as predicting the next word in a sentence, before fine-tuning it on a more specific task, like text summarization or sentiment analysis.\n\nOne of the challenges of LLMs is their high computational and resource requirements, which can make them inaccessible to many researchers and organizations. Additionally, there are concerns about the ethical implications of using LLMs, such as potential biases in the data they are trained on and the impact of generated text on society.\n\nOverall, Large Language Models represent a significant advancement in natural language processing and have the potential to revolutionize how we interact with and process human language. As researchers continue to improve and refine these models, we can expect to see even more powerful and capable language models in the future."
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "C1ndFYtghTpFLwfAJW8uLN2S4vXwXv1Sg6zAwJuK1eU4",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741358017679,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"2BRgRzLPUWQd7RMEoCqx7jMZFN1yWb8MJ3cCApna8eLMqzHXTZXyVznPE9cKCZfq4nGYf11gzGELDrrqKes9jXKf"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "2BWgYLhTek2dThqrSY1UmR4D6gx1CEywYThGQgNENnJC",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741358017696,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"2dhHkF12buhsDveN7wHvWWx6dqvp9UCjNpCYzaQAuPfmffRqeQvZN55snHJb3cRVqJb6iiTAXpEZBBVLQ4xBRpVN"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "5wkVoqqdSy8P5UM5ujSxLLsxNmJS4trckVfCL8ymAs4e",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741358027719,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"2t8g5ZT1oD7zLZ1Z5jcZGC79fy1jrEV4k3izGs2pAs6FGd3yd7MTrdqt2xE2yL7YEsiFaER1u6i7jZSHfCDteoLD"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "dU18NDUMgWPmD4nG2xW4tTdHh47Un7mxCY8byGfWu3j",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741358027735,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"4Jx9maMFZgfRnGZrGBCKStYZN8MU4wQSQbAeiz71kT7zKNbSWQjFrFmx5eVXWm2nstR2fnGKKdAdZwshcWHJuFvR"
],
"dApp": "3N9yMmmL5cJ7LJxr8o6GFbKFUbGz4XcAjeg",
"payment": [],
"call": {
"function": "transferVotes",
"args": []
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "DFssMyyFoVy4XhH8ovM7T8AJKEfY3yhxi3kNgacrp6y1",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741358030052,
"version": 2,
"chainId": 84,
"sender": "3N5qcEiKJBDwpVZgCeJP814xDbE54ZG4LHo",
"senderPublicKey": "AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc",
"proofs": [
"2Tk2wGVKKd3BnQqL4872VZKYXEB7EiLh7xHxPhDFfPy6NmcZnTkXcPUih6EPQhVqet7ApUu6rcckZQvz1DKFRU78"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [
{
"amount": 10000000,
"assetId": "AxGKQRxKo4F2EbhrRq6N2tdLsxtMnpzQsS4QemV6V1W1"
}
],
"call": {
"function": "registerTask",
"args": [
{
"type": "string",
"value": "Provide a comprehensive and in-depth explanation of Large Language Models (LLMs)."
},
{
"type": "string",
"value": "chatgpt"
}
]
},
"applicationStatus": "succeeded"
}
]
}