{
"version": 5,
"timestamp": 1741357560545,
"reference": "2zee2rpFn9bMXuYUuDpmCnKAB1eK12o4vq1SzxZwpriB",
"nxt-consensus": {
"base-target": 200,
"generation-signature": "2GUoExus1Yt8xu5mx1uEPyF2jK8nLpXnk3GmzjJ4BfvkFRibt6pW7EJvH1HRaYTsi3Fr4wo2U9HZHgtpma4PAQPtnmCTiHBBcdNHnjYjcbvWfx69HB92whdJ4hvrKQfEsGfr"
},
"transactionsRoot": "CHHSiWYXkeSJLsxRDTaH9RR19JT4cBGntmYSUd3BJFoK",
"id": "AGiBcq6bTLTBrP71QNZ4MKi7Jn9uhDGrwr5n7Z6p9shg",
"features": [],
"desiredReward": -1,
"generator": "3NA4UdyFVv7v1J6UgGe4moyHm2fambavqvm",
"generatorPublicKey": "C5xv7bdAfKaQyvHfhUvC2NkfWfLVN7VUPsdHmHMJ5crN",
"stateHash": "6U9J45xiiZDkSpzG9acswZUmghisb2tNQ75GETTmvgWE",
"signature": "J9SzsxmEe687H6PSA4ZT5hVhcNpLvpMfCE3XrUCuqKQ9vozfN7x2ZevMeQRRSwyiaTkHj328dnr8Py8XYcaigeR",
"blocksize": 4651,
"transactionCount": 6,
"totalFee": 3000000,
"reward": 600000000,
"rewardShares": {
"3Myb6G8DkdBb8YcZzhrky65HrmiNuac3kvS": 200000000,
"3N13KQpdY3UU7JkWUBD9kN7t7xuUgeyYMTT": 200000000,
"3NA4UdyFVv7v1J6UgGe4moyHm2fambavqvm": 200000000
},
"VRF": "3cQnMdPQyWkCqHCsa86B4yDVAVkRaEGs2geiGPH2acHK",
"fee": 3000000,
"previous": "3533707",
"height": "3533708",
"next": "3533709",
"transactions": [
{
"type": 16,
"id": "5yA5WdRnVNbtFvAmqZKyFYT3U3DhZYjtEgNCozATt8gW",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357560576,
"version": 2,
"chainId": 84,
"sender": "3MrD3wC4Yds6JgyGthbzArnJDxcSgUCLCvB",
"senderPublicKey": "J5m6H7xXXwMv5HCXAPBPr71SoChHv7cbrqp7bdnKC9P3",
"proofs": [
"gGUyH6yHifLPbtv6rjdFnSyRKzEr5EstBwUwRH1NmaNortrx9hr3dZ6qsFkgyddcx5LzzdpWn8nZnHjQXpLpPP5"
],
"dApp": "3N98Ngyaszw66EakvWRCiZ771ja2RDgNaxV",
"payment": [],
"call": {
"function": "finalize",
"args": [
{
"type": "string",
"value": "A7Ksh7fXyqm1KhKAiK3bAB2aiPSitQQF6v1pyu9SS3FR"
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "8VdhaVDUTEyTRZQWtKdTiNZH2ZkEgorqSfrmq5CTRvU8",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357561255,
"version": 2,
"chainId": 84,
"sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat",
"senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY",
"proofs": [
"4Q35S9uw15BAQx3VWiHYFjczaNUu7K3cYWZXR57aVSXtPA1bUZ7wp4iS5pg9kdpngvH6XxQWPpNCJVcdE23DPicc"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [],
"call": {
"function": "checkoutTask",
"args": [
{
"type": "string",
"value": "9F27FmSfEdpwjxgG4AuRa9xDwErDgaBNwXpE3o9VLj7K_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc"
},
{
"type": "string",
"value": "chatgpt"
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "CVPdkhYBLGsbqdUBUD5C81yJhALDvfD3aeQnK1MG7EVt",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357566752,
"version": 2,
"chainId": 84,
"sender": "3Mw2AVgk5xNmkWQkzKKhinhBH1YyBTeVku2",
"senderPublicKey": "FzQzVySZKzJfchuxbyx3Xxaw7cLRWLNzW4jehgzfK88C",
"proofs": [
"5UCoLz4jeBn58jocTJA57RWUKiXZgN8EaREzweoYfhrGAFNuB1QtkgLqWYG8m26mKCXU1Qs48nryeuqajfkKc62d"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "extendMainChain",
"args": [
{
"type": "string",
"value": "c1c92034854a7afb7bd07479371fb853328d207dbcb60c0d32b8f67ae68acbb1"
},
{
"type": "string",
"value": "90557c25882d05f042391a4e6bacb075f88da4edc155d89dad949276939abeb4"
},
{
"type": "binary",
"value": "base64:JsmXsci2lJ3THOkJRUNM/qkGgpM1oa03UPq64V13K9Y="
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "6ab44Dd6UbBv78JTwVVnK2cq6jCfdvcVThrtvEPSGzW1",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357572840,
"version": 2,
"chainId": 84,
"sender": "3Mw2AVgk5xNmkWQkzKKhinhBH1YyBTeVku2",
"senderPublicKey": "FzQzVySZKzJfchuxbyx3Xxaw7cLRWLNzW4jehgzfK88C",
"proofs": [
"X4tvgUoE231diGLn971mSTiY31Te966pH1ano62qE4P2U78vXS8tK1qkqwkfebkT11mkcfMUY6Ljop7kBDgSFYu"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "cf513c7be9f244d9c5eb6c40b798fc4e6bcf2fae7caf92064025672806dea2b5"
},
{
"type": "string",
"value": "c1c92034854a7afb7bd07479371fb853328d207dbcb60c0d32b8f67ae68acbb1"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "RzUs6jyiRiS6H4p2YqrL7KywBQU1AkiWy7mfQLrnhAj",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357578888,
"version": 2,
"chainId": 84,
"sender": "3Mw2AVgk5xNmkWQkzKKhinhBH1YyBTeVku2",
"senderPublicKey": "FzQzVySZKzJfchuxbyx3Xxaw7cLRWLNzW4jehgzfK88C",
"proofs": [
"wrxMDJtYPZFUeYZJkUufTBELCLoS3QyK5aQ9GDvDxARCWDH4CaJdDeJmBe4VEhi9ZN91jBrsy84LXnEsqov3BnN"
],
"dApp": "3Msx4Aq69zWUKy4d1wyKnQ4ofzEDAfv5Ngf",
"payment": [],
"call": {
"function": "appendBlock",
"args": [
{
"type": "string",
"value": "0418497978bc7e1cff1a664ca9c23fcfc973d68332dfeed0928c7a065137aef5"
},
{
"type": "string",
"value": "cf513c7be9f244d9c5eb6c40b798fc4e6bcf2fae7caf92064025672806dea2b5"
},
{
"type": "string",
"value": ""
},
{
"type": "integer",
"value": 89
}
]
},
"applicationStatus": "succeeded"
},
{
"type": 16,
"id": "DtFyULXMcSu1WMwfrEQuEsWFmm2VsroAGMzxpV3QcVAY",
"fee": 500000,
"feeAssetId": null,
"timestamp": 1741357582306,
"version": 2,
"chainId": 84,
"sender": "3NAAoJ554QsZfqE8W8Rg8LsJb79d5b1pDat",
"senderPublicKey": "Ct2djqZsAz77Ur5Y9pMbgrJR2xn6hDprcsHUYgLfsdkY",
"proofs": [
"2y6PKfMpL3531EW35hJsvNb3aB9V9ruxDBXmfupVyqLo46girXaQYzgN5G1kKmKVdmmyC7Zj8KhQ9RQcn9eLgCaW"
],
"dApp": "3N9tKixzqTYWnEXQxrDQ5pBTGvQd6sFsvmV",
"payment": [],
"call": {
"function": "commitTask",
"args": [
{
"type": "string",
"value": "9F27FmSfEdpwjxgG4AuRa9xDwErDgaBNwXpE3o9VLj7K_AqqtiUWzxuW2sGQZiUBdYgDuY9J9GaL327FdWiEuh6qc"
},
{
"type": "string",
"value": "Large Language Models (LLMs) are sophisticated artificial intelligence systems that are trained on vast amounts of text data to learn the patterns and structures of human language. These models have gained significant attention in recent years due to their ability to generate highly coherent and contextually relevant text across a wide range of tasks, such as text generation, translation, summarization, and more.\n\nThe key components of LLMs include neural network architecture, massive amounts of training data, and advanced algorithms for natural language processing tasks. Some well-known examples of LLMs include OpenAI's GPT (Generative Pre-trained Transformer) series, Google's BERT (Bidirectional Encoder Representations from Transformers), and others.\n\nThese models are typically pre-trained on large-scale text data, such as books, articles, and websites, to capture the complex relationships and nuances of language. During pre-training, the model learns to predict the next word in a sentence, masked words, or the relationship between two sentences, which helps it to understand the context and semantics of the text.\n\nOnce pre-trained, LLMs can be fine-tuned on specific tasks or domains to enhance their performance and adapt them to specific applications. Fine-tuning involves providing the model with labeled data for a particular task and adjusting its parameters to improve its accuracy and efficiency.\n\nOne of the strengths of LLMs is their ability to generalize well across different tasks and domains, thanks to the vast and diverse training data they have been exposed to. This generalization power allows LLMs to perform exceptionally well on a wide range of natural language understanding tasks without extensive task-specific training.\n\nHowever, LLMs also pose significant challenges and ethical concerns, such as biases in the training data, potential misuse for generating misinformation or fake news, and the environmental impact of training and running these large models. Researchers and developers are actively working to address these issues and develop more fair, transparent, and sustainable LLMs.\n\nIn conclusion, Large Language Models represent a groundbreaking advancement in artificial intelligence and natural language processing, with the potential to revolutionize various applications and services. By understanding the underlying mechanisms and capabilities of LLMs, researchers and practitioners can harness their power effectively and responsibly for the benefit of society."
}
]
},
"applicationStatus": "succeeded"
}
]
}